

QUESTION BANK
DATA STRUCTURES AND ALGORITHMS

Electronics and Communication Department

BABA BANDA SINGH BAHADUR ENGINEERING COLLEGE, FATHEGARH SAHIB, PUNJAB

1

ELECTRONICS AND COMMUNICATION DEPARTMENT

QUESTION BANK

Subject: Data Structures and Algorithms Subject Code:BTCS-301-18

Examiner: Dr.Raju Sharma Semester: 4th

 __

MODULE 1: INTRODUCTION

2 Marks Questions

1. Define data structure and its types.

2. What are asymptotic notations? List its types.

3. Define time-space tradeoff.

4. What are the basic operations on data structures?

5. Differentiate between linear search and binary search.

6. Define pointers and their use in C.

7. What is dynamic memory allocation?

8. Define self-referential structures.

9. What is traversal in data structures?

10. What is the best case and worst case complexity of binary search?

11. What is the significance of Big-O notation?

12. What is the difference between static and dynamic memory allocation?

13. Write the formula for time complexity of linear search.

14. Define garbage collection in dynamic memory allocation.

15. List any two advantages of pointers.

4 Marks Questions

1. Compare linear search and binary search in terms of performance.

2. Explain time-space complexity with examples.

3. Write an algorithm for binary search and analyze its complexity.

4. Explain asymptotic notations (O, Ω, and Θ) with examples.

5. Discuss the advantages and disadvantages of pointers.

6. Explain dynamic memory allocation functions in C with examples.

2

ELECTRONICS AND COMMUNICATION DEPARTMENT

7. Differentiate between stack and heap memory.

8. Write a C program to demonstrate malloc() and free() functions.

8 Marks Questions

1. Discuss asymptotic notations in detail with graphical representation.

2. Implement binary search in C and analyze its complexity.

3. Explain self-referential structures and demonstrate with an example program.

4. Explain pointers and their applications in data structures with a program.

MODULE 2: STACKS AND QUEUES

2 Marks Questions

1. Define stack and its operations.

2. What is a queue? How is it different from a stack?

3. Define LIFO and FIFO principles.

4. What is a circular queue?

5. What is the use of a stack in recursion?

6. Define priority queue.

7. What is postfix notation?

8. What is a deque (double-ended queue)?

9. What is the time complexity of push and pop operations in a stack?

10. What are the applications of queues?

11. Define expression evaluation using a stack.

12. What is the maximum number of elements a circular queue can hold?

13. Define overflow and underflow conditions in a stack.

14. What is a linked list-based queue?

15. What are the advantages of double-ended queues?

4 Marks Questions

1. Explain stack ADT with its operations.

2. Write an algorithm for infix to postfix conversion.

3

ELECTRONICS AND COMMUNICATION DEPARTMENT

3. Discuss the applications of stack in expression evaluation.

4. Explain circular queue with an example.

5. Differentiate between simple queue, circular queue, and priority queue.

6. Explain expression evaluation using stacks with an example.

7. Write a program to implement stack using an array.

8. Explain applications of stacks in recursion.

8 Marks Questions

1. Implement stack using an array and write algorithms for push, pop, and peek

operations.

2. Explain expression conversion techniques (infix, prefix, postfix) with detailed

examples and algorithms.

3. Explain priority queues and write an algorithm for insertion and deletion.

4. Write an algorithm to implement a queue using linked lists and analyze its

complexity.

MODULE 3: LINKED LISTS AND TREES

2 Marks Questions

1. Define linked list.

2. What is a header node in a linked list?

3. List any two advantages of linked lists over arrays.

4. Differentiate between singly and doubly linked lists.

5. Define AVL tree.

6. What is a binary search tree (BST)?

7. Define traversal in a tree.

8. What is a circular linked list?

9. Define balanced tree.

10. What is the height of an AVL tree with 7 nodes?

11. What is the use of header nodes in linked lists?

12. What are leaf nodes in a binary tree?

4

ELECTRONICS AND COMMUNICATION DEPARTMENT

13. Define preorder traversal.

14. What is a degenerate tree?

15. What is the maximum number of children a binary tree node can have?

4 Marks Questions

1. Explain linked representation of a stack and queue.

2. Write an algorithm for insertion and deletion in a singly linked list.

3. Explain binary search tree (BST) insertion with an example.

4. Compare binary tree, binary search tree, and AVL tree.

5. Explain preorder, inorder, and postorder traversal techniques.

6. What are the advantages and disadvantages of a circular linked list?

7. Write an algorithm to insert a node in a doubly linked list.

8. Explain AVL tree rotations with an example.

8 Marks Questions

1. Implement a singly linked list in C and write functions for insertion, deletion, and

traversal.

2. Explain different types of trees and discuss their operations.

3. Implement tree traversal algorithms (preorder, inorder, postorder) and analyze

their complexities.

4. Explain applications of binary search trees (BSTs) in real-world scenarios.

MODULE 4: SORTING AND HASHING, GRAPHS

2 Marks Questions

1. Define sorting. Why is sorting important?

2. What are the properties of Bubble Sort?

3. Define time complexity and space complexity in sorting algorithms.

4. What is the worst-case complexity of Quick Sort?

5. What is the key difference between Merge Sort and Quick Sort?

6. What is a stable sorting algorithm? Give an example.

5

ELECTRONICS AND COMMUNICATION DEPARTMENT

7. What is hashing?

8. Define collision in hashing.

9. What are two methods of resolving collisions in hashing?

10. Define graph in data structures.

11. What is the difference between DFS and BFS traversal techniques?

12. What is an adjacency matrix?

13. What is an adjacency list?

14. What is the time complexity of Heap Sort?

15. Give one real-life application of graph traversal algorithms.

4 Marks Questions

1. Explain the working of Bubble Sort with an example.

2. Compare Selection Sort and Insertion Sort in terms of efficiency.

3. Explain Merge Sort with its time complexity.

4. Write an algorithm for Quick Sort and explain its working.

5. Compare Merge Sort and Quick Sort in terms of complexity and performance.

6. What is open addressing and chaining in hashing? Explain with examples.

7. Explain linear probing and quadratic probing in hashing.

8. Describe DFS and BFS algorithms with an example graph.

9. Write an algorithm for BFS traversal of a graph.

10. Write an algorithm for DFS traversal of a graph.

11. Explain insertion and deletion in a heap with examples.

12. Compare Heap Sort and Quick Sort.

13. Discuss graph representations (adjacency matrix and adjacency list).

14. What are directed and undirected graphs? Explain with examples.

15. Explain the Dijkstra algorithm for shortest path with an example.

6

ELECTRONICS AND COMMUNICATION DEPARTMENT

8 Marks Questions

1. Explain all sorting techniques (Bubble, Selection, Insertion, Quick, Merge, Heap Sort)

with their complexities.

2. Implement Quick Sort in C and analyze its complexity.

3. Write a C program to implement Merge Sort.

4. What is hashing? Explain different collision resolution techniques with examples.

5. Explain the Heap Sort algorithm and implement it in C.

6. Discuss graph traversal techniques (DFS and BFS) with example graphs and code.

7. Implement graph representation (adjacency matrix and adjacency list) in C.

8. Write a program to perform hashing with linear probing.

Numerical Problems

Problem 1: Quick Sort

Sort the array {34, 7, 23, 32, 5, 62} using Quick Sort. Show the step-by-step process and

determine its time complexity.

Problem 2: Hashing (Division Method)

Given keys {27, 43, 34, 15, 51, 19}, use a hash table of size 7 and apply the division method

(h(k) = k mod 7).

1. Insert all keys into the table.

2. Show collision resolution using linear probing.

Problem 3: Graph Traversal

Consider the following graph:

 (A)---(B)---(C)

 | |

 (D)---(E)

Perform BFS traversal starting from A.

Perform DFS traversal starting from A.

