
Microcontroller

8051

• An embedded microcontroller is a chip which

is a computer processor with all it’s support
functions (clocking and reset), memory, and

i/O built into the device.

Power dist
Control

store

Reset

control

Clock and

timing RAM

Microcontroller block diagram

types of microcontrollers

• Embedded
– All the hardware required to run the application is

provided on the chip. typically: power, reset, clock,
memory and IO.

• External memory
– some microcontrollers allow the connection of external

memory.

Processor Architecture
• Harvard and Princeton

– US govt asked for computer to be used with naval shell
distance for varying elevations and environmental
conditions.

– Princeton provided ‘Von Neumann’ architecture where
common memory space are used for storing program and
data. Memory unit is responsible for arbitrary access to
memory space between reading instructions and passing
data back and forth with processor and its internal
registers.
• Advantages: simple memory interfacing and management.

– Harvard proposes a design that used separate memory
banks for program storage, the processor stack, and
variable RAM.
• Advantage: execute instruction in fewer cycles than Von Neumann.

Princeton architecture block

diagram

program ROM

Variable RAM

Stack RAM

memory

interface unit Processor and built-

in registers

instruction decode

Data

Add

Ctrl

Harvard architecture block diagram

program ROM Variable RAM

PC Stack

Processor and

built-in

registers

instruction

decode

Data

Add

Ctrl

Data

Add

Ctrl

• CISC versus RISC

– RISC stands for “Reduced Instruction Set
Computers”. Instructions are as bare a minimum
as possible to allow users to design their own

operations.

– CISC stands for “Complex Instruction Set
Computers”. Large number of instructions, each
carrying out a different permutation of the same

operation.

Microcontroller memory types

• Control store

– program memory or firmware. this memory space

is the maximum size of the application that can be

loaded into the microcontroller and that the

application also includes all the low-level code and

device interface necessary to execute an

application.

– nonvolatile

– 8051 has 5 different types of control store : none,

mask ROM, PROM, EPROM and EEPROM/Flash

• Variable area (RAM)

– 4 types variable data storage: bits, registers,

variable RAM, PC stack.

– in 8051 they are implemented as SRAM.

–program counter stack

– part of the RAM.

– LIFO memory.

– must be initialized by the starting address of

the stack area.

• Hardware interface registers (I/O space)

– could be memory mapped or IO mapped.

– mostly in variable memory space.

 IO in Princeton architecture

program

ROM

IO registers

variable

RAM

Stack

Counter

program

ROM

IO

registers

variable

RAM

Stack

Counter

memory

mapped IO

separate

IO space

 IO in Harvard architecture

program

ROM

registers

space

IO

registers

program

ROM

registers

space

IO

registers

program

ROM

register

space

IO

registers

IO registers in

program ROM

IO registers in

register space

IO registers in

separate space

Microcontroller features

• Clock/Oscillator

• IO pins

• interrupts

• timers

• Peripherals

• ADC inputs

• DAC outputs

• PWM outputs

Basic features

Comparing µC with µP

• General-purpose

microprocessors contains

o No RAM

o No ROM

o No I/O ports

• Microcontroller has

o CPU (microprocessor)

o RAM

o ROM

o I/O ports

o Timer

o ADC and other peripherals

 Have the advantage of versatility on the

amount of RAM, ROM, and I/O ports

 The fixed amount of on-chip ROM, RAM,

and number of I/O ports and less

computing power; suitable for very

specific purpose with much less cost.

Applications

 Home

 Appliances, intercom, telephones, security systems, garage door

openers, answering machines, fax machines, TVs, cable TV tuner, VCR,

camcorder, remote controls, video games, cellular phones, musical

instruments, sewing machines, lighting control, paging, camera, pinball

machines, toys, exercise equipment.

 Office

 Telephones, security systems, fax machines, microwave, copier, laser

printer, color printer, paging.

 Auto

 Navigation system, engine control, air bag, ABS, instrumentation,

security system, transmission control, entertainment, climate control,

cellular phone, keyless entry.

Examples of 8-bit µC

 Motorola’s 6811
 Intel’s 8051
 Zilog’s Z8
 Microchip’s PIC

The 8051 family has the largest number of

diversified (multiple source) suppliers:

o Intel (original)

o Atmel

o Philips/Signetics

o AMD

o Infineon (formerly Siemens)

o Matra

o Dallas Semiconductor/Maxim

8051 µC features
Intel introduced 8051, referred as MCS-51, in 1981

• The 8051 is an 8-bit processor

• The CPU can work on only 8 bits of data at a time

• 1 to 16 MHz clock

• The 8051 has

• 128 bytes of RAM

• 4K bytes of on-chip ROM

• Two timers

• One serial port

• Four I/O ports, each 8 bits wide

• 2 external and 3 internal interrupt sources

contd.
• 8051 instruction cycle consists of 12 clock cycles.

• Application should be run using slower clock speed to reduce power

consumption.

• Dallas version of 8051 is 87C51 has EPROM as control store and CMOS

device:

• 24Mhz

• 12 cycle per instruction

• 4Kbyte of Control stote

• 128 bytes of RAM

• 32 I/O lines

• Two 8/16-bit times

• Multiple internal and external interrupts sources

• Programmable serial ports

• Interface upto 128Kbytes of external memory

8051 Block Diagram

oscill

ator

4K Prog

Memory
128 B

RAM

2 16-bit

timers/

counter

8051

CPU

64K bus

expansion

control

I/O

ports

Serial port/

UART

Frequency

Reference

interrupt
interrupt

control
Ports/IO/

ADD/Data

bus

Tx Rx

counters

8051 memory-register map

up to 64

KB of

external

EPROM/

ROM

up to 60 KB

of external

ROM/

EPROM

4 KB of

internal

ROM/

EPROM

21 SF registers

up to 64 KB

of external

RAM

128 KB internal

RAM

or and

program memory RAM/data memory

0000

FFFF

0000

0FFF

FFFF

1000

0000

FFFF

0000

007F

0080

00F8

SF = Special Function

128 bytes internal RAM

(80)

scratch pad

(16) bit/byte

addressable

(8) 8-bit registers bank

3

(8) 8-bit registers bank

2

(8) 8-bit registers bank

1

(8) 8-bit registers bank

0

4
 re

g
is

te
r b

a
n
k
s

07
08

0F

17

1F

2F

7F

F7 F0F0H

E7 E0

D7 D0

BF B8

B7 B0

AF A8

A7 A0

9F 98

97 90

E0H

D0H

B8H

B0H

A8H

A0H

99H

98H

90H

8DH

8CH

8BH

8AH

89H

8F 8888H

87H

83H

82H

81H

87 8080H

B

ACC

PSW

IP

P3

IE

P2

SBUF

SCON

P1

TH1

TH0

TL1

TL0

TMOD

TCON

PCON

DPH

DPL

SP

P0

CY AC F0 RS1RS0OV P PSW

CY – carry flag

AC – auxiliary carry

F0 – general purpose indicator

RS1 – register bank selector bit 1

RS0 – register bank selector bit 0

About RAM

• 128 bytes of internal RAM (00H to 7FH)is general R/W storage.

• Part of this RAM is used as general purpose registers.

• 21 Special-Function Registers (SFR) which are not part of 128 bytes

of RAM at 80H to F8H locations of the RAM space.

• 64 KB External RAM can be used fully in addition to 128 internal

RAM.

• Although 8051 normally operates with separate program and data

memory space, there are applications where it can be used as one

64 KB of memory. When this is done, 8051 can input a block of data

through its serial communication port, load it into memory, and then

execute that data as a program.

• SFRs are accessed as if they were normal Internal RAM. The only difference is that

Internal RAM is from address 00h through 7Fh whereas SFR registers exist in the

address range of 80h through F8h.

• B register is used during multiply and divide operations as to hold higher 8-bit

source. Otherwise it can used as a simple scratch-pad register.

• ACC and PSW are like microprocessor’s accumulator and flag. PSW does not have
a zero flag. RS1 and RS0 indicates the current register bank.

• DPH and DPL is used as 2-byte data pointer DTPR when addressing external

memory. Can be used as 8-bit or 16 bit memory pointers.

• SP incremented just before data is stored by using push or call instruction or the

interrupt. 8051 SP initialized to 07H on reset. This means first data put on the

stack is loaded into memory location 08H.

• The 8051 has four I/O ports of 8 bits, for a total of 32 I/O lines. P0,P1,P2 and P3.

• PCON is power control register. Can put mp into hibernation and conserve power.

About Program memory

• if more program memory is needed, internal 4 KB

memory can be expanded by an additional 60 KB,

giving a full 64 KB of program memory space.

• if EA (active low) is asserted, the 8051 does not use

the internal 4K ROM. The external memory must

start from location 0000H.

Clock/Oscillator

• Clock and communication requirement

• Ceramic or crystal?

• State=2 pulses

• Machine cycle=6 states

• Instruction cycle=1/2/4 MC

Timers/counters

• Event detection, timed control signal generation, counter etc.

• Reads from or written to by the processor and is given by some constant

frequency source. Generates an interrupt at the overflow. Run by µC clock

or external clock.

Interval=
(CountMax− Reload)

ClockFreq

Timer/counter contd..

• A machine cycle instruction lasts for 12 quartz oscillator periods, which

means that by embedding quartz with oscillator frequency of 12MHz, a

number stored in the timer register will be changed million times per

second, i.e. each microsecond.

• 2 timers/counters called T0 and T1

• If the timer contains for example number 1000 (decimal), then the TH0

register (high byte) will contain the number 3, while the TL0 register (low

byte) will contain decimal number 232.

• Formula: TH0 × 256 + TL0 = T

so, 3 × 256 + 232 = 1000
TH0 = 1000/256 = 3 (00000011)

TL0 = 1000 – 3x256 = 232 (11101000)

Timer/counter contd..

• The largest value it can store is 65 535

• In case of exceeding this value, the timer will be automatically cleared

and counting starts from 0. This condition is called an overflow.

TMOD Register (Timer Mode)

• There are 4 operational modes.

• The low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4

- bit7) refer to the timer 1.

GATE1 enables and disables Timer 1 by means of a signal brought to the INT1

pin (P3.3):

1 - Timer 1 operates only if the INT1 bit is set.

0 - Timer 1 operates regardless of the logic state of the INT1 bit.

C/T1 selects pulses to be counted up by the timer/counter 1:

1 - Timer counts pulses brought to the T1 pin (P3.5).

0 - Timer counts pulses from internal oscillator.

T1M1,T1M0 These two bits select the operational mode of the Timer 1.

T1M1 T1M0 MODE DESCRIPTION

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split mode

GATE0 enables and disables Timer 1 using a signal brought to the INT0 pin (P3.2):

1 - Timer 0 operates only if the INT0 bit is set.

0 - Timer 0 operates regardless of the logic state of the INT0 bit.

C/T0 selects pulses to be counted up by the timer/counter 0:

1 - Timer counts pulses brought to the T0 pin (P3.4).

0 - Timer counts pulses from internal oscillator.

T0M1,T0M0 These two bits select the operational mode of the Timer 0.

T0M1 T0M0 MODE DESCRIPTION

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split mode

• Timer 0 in mode 0 (13-bit timer):

• This mode configures timer 0 as a 13-bit timer which consists of all 8 bits of TH0 and the lower 5 bits

of TL0. As a result, the Timer 0 uses only 13 of 16 bits. Each coming pulse causes the lower register

bits to change their states. After receiving 32 pulses, this register is loaded and automatically

cleared, while the higher byte (TH0) is incremented by 1. This process is repeated until registers

count up 8192 pulses. After that, both registers are cleared and counting starts from 0.

• Timer 0 in mode 1 (16-bit timer)

• Mode 1 configures timer 0 as a 16-bit timer comprising all the bits of both registers TH0

and TL0. That's why this is one of the most commonly used modes. Timer operates in

the same way as in mode 0, with difference that the registers count up to 65 536 as

allowable by the 16 bits.

• Timer 0 in mode 2 (Auto-Reload Timer)

• Mode 2 configures timer 0 as an 8-bit timer. Actually, timer 0 uses only one 8-bit

register for counting and never counts from 0, but from an arbitrary value (0-255)

stored in another (TH0) register.

• Timer 0 in Mode 3 (Split Timer)

• Mode 3 configures timer 0 so that registers TL0 and TH0 operate as separate 8-bit

timers. In other words, the 16-bit timer consisting of two registers TH0 and TL0 is split

into two independent 8-bit timers. This mode is provided for applications requiring an

additional 8-bit timer or counter. The TL0 timer turns into timer 0, while the TH0 timer

turns into timer 1. In addition, all the control bits of 16-bit Timer 1 (consisting of the

TH1 and TL1 register), now control the 8-bit Timer 1. Thus, the operation 16 bit timer

1 is restricted when timer 0 is in mode 3.

Timer Control (TCON) Register

• Only 4 bits of this register are used for this purpose, while rest of them is

used for interrupt control.

•

TF1 bit is automatically set on the Timer 1 overflow.

TR1 bit enables the Timer 1.

1 - Timer 1 is enabled.

0 - Timer 1 is disabled.

TF0 bit is automatically set on the Timer 0 overflow.

TR0 bit enables the timer 0.

1 - Timer 0 is enabled.

0 - Timer 0 is disabled.

How to use the Timer 0 ?

• the timer 0 operates in mode 1 and counts pulses generated by internal

clock the frequency of which is equal to 1/12 the quartz frequency.

Timer 0 Overflow Detection

• When it occurrs, the TF0 bit of the TCON register will be automatically

set. The state of this bit can be constantly checked from within the

program or by enabling an interrupt which will stop the main program

execution when this bit is set.

• a program delay of 0.05 seconds (50 000 machine cycles).

A Pin of IO ports

IO ports

 All four 8 bit ports are bidirectional.

 Port latch (D-type FF) allows u to store data going out of the

port or coming into the port. The latch can be set by data on

the data bus or at the port pin. Also the latch can place data

on the mc bus or send it to the port pin. However, port pins

may have different value than port latches.

 When 1s are written to port, pins are pulled high (or floats)

by the internal pull-ups and can be used as inputs.

 In order to configure a microcontroller pin as an output, it is

necessary to apply a logic zero (0) to appropriate I/O port bit.

In this case, voltage level on appropriate pin will be 0.

• The Port 1 is a general purpose input/output port which can
be used for a variety of interfacing tasks.

• To use the pins of port 0 as both input and output each pin
must be connected externally to a 10KΩ pull-up resistor.

Port 0

Dual role of P0
 Port 0 and 2 together can be used to address the external

memory. Port 0 can also be used to exchange data from the

external port. accessing 64K bytes of external memory, it

needs a path for the 16 bits of the address. P0 gives lower

Byte of Address.

Port 1

 This port does not need any pull-up resistors since it already

has pull-up resistors internally.

 If port 1 is configured as an output port, to make it an input

port again, it must programmed as such by writing 1 to all its

bits.

 Upon reset, port I is configured as an input port.

 In the following code, port 1 is configured first as an input

port by writing 1 s to it, then data is received from that port

and saved in R7, R6, and R5.

Port 2

• It can be used as input or output.

• Internal pull-up resistor.

• Upon reset, port 2 is configured as an input port.

• Alternate use

• provide higher byte address when external memory is connected.

Port 3
• Port 3 can be used as input or output. On Reset input port.

• Has internal pull-up resistors.

• Alternate use

• providing some extremely important signals such as interrupts, serial
I/O, timer/counter and read/write control for external memory.

PIN ALT. USE Control SFR

P3.0 RXD Serial Data In SBF

P3.1 TXD Serial Data out SBF

P3.2 Ext. Interrupt 0 TCON.1

P3.3 Ext. Interrupt 1 TCON.3

P3.4 IT0 Ext. Timer 0 In TMOD.3

P3.5 IT1 Ext. Timer 1 In TMOD.7

P3.6 Write Control For ext.

memoryP3.7 Read Control

Interrupts
• Two SFRs controls the function of interrupts in 8051

microcontroller.

• IE, Responsible for disable/enable the function.

• IP, Responsible for priority assignment:

The priority list offers 3 levels of interrupt priority:

 Reset! The absolute master. When a reset request arrives, everything

is stopped and the microcontroller restarts.

 Interrupt priority 1 can be disabled by Reset only.

 Interrupt priority 0 can be disabled by both Reset and interrupt

priority 1.

EA - global interrupt enable/disable:

0 - disables all interrupt requests. 1 - enables all individual interrupt requests.

ES - enables or disables serial interrupt:

0 - UART system cannot generate an interrupt. 1 - UART system enables an

interrupt.

ET1 - bit enables or disables Timer 1 interrupt:

0 - Timer 1 cannot generate an interrupt. 1 - Timer 1 enables an interrupt.

EX1 - bit enables or disables external 1 interrupt:

0 - change of the pin INT0 logic state cannot generate an interrupt.

1 - enables an external interrupt on the pin INT0 state change.

ET0 - bit enables or disables timer 0 interrupt:

0 - Timer 0 cannot generate an interrupt. 1 - enables timer 0 interrupt.

EX0 - bit enables or disables external 0 interrupt:

0 - change of the INT1 pin logic state cannot generate an interrupt.

1 - enables an external interrupt on the pin INT1 state change.

*bit6 is not implemented.

* ET2 is reserved for future use.

Interrupt Priority

If an interrupt of higher priority arrives while an interrupt is in progress, it will

be immediately stopped and the higher priority interrupt will be executed

first.

o If the both interrupt requests, at the same priority level, occur one after another,

the one which came later has to wait until routine being in progress ends.

o If two interrupt requests, at different priority levels, arrive at the same time then

the higher priority interrupt is serviced first.

o If two interrupt requests of equal priority arrive at the same time then the

interrupt to be serviced is selected according to the following priority list:

 External interrupt INT0, i.e. IE0

 Timer 0 interrupt, i.e. TF0

 External Interrupt INT1, i.e. IE1

 Timer 1 interrupt, i.e. TF1

 Serial Communication Interrupt, i.e. RI, TI

PS - Serial Port Interrupt priority bit

Priority 0 or Priority 1

PT1 - Timer 1 interrupt priority

Priority 0 or Priority 1

PX1 - External Interrupt INT1 priority

Priority 0 or Priority 1

PT0 - Timer 0 Interrupt Priority

Priority 0 or Priority 1

PX0 - External Interrupt INT0 Priority

Priority 0 or Priority 1

Bit7 and bit6 are not implemented. PT2 is reserved for future use.

Handling Interrupt

When an interrupt request arrives the following occurs:

1. Instruction in progress is ended.

2. The address of the next instruction to execute is pushed on the stack.

3. Depending on which interrupt is requested, one of 5 vectors (addresses) is written

to the program counter in accordance to the table below:

4. When an interrupt routine is executed, the address of the next instruction to

execute is poped from the stack to the program counter and interrupted program

resumes operation from where it left off.

INTERRUPT SOURCE VECTOR (ADDRESS)

IE0 3 h

TF0 B h

IE1 13h

TF1 1B h

RI, TI 23 h

All addresses are in hexadecimal format

8051 Instruction Set
• 8 bit opcode, 255 codes implemented

• 111 truly different instructions

– 49 single bytes, 45 two bytes, and 17 three-bytes.

• 4 different types of instructions.

1. data transfer instructions.

• General purpose: MOV, PUSH, POP

• Accumulator specific: MOVX, MOVC, XCH

• Address-object transfer: to load 16 bit address data into data pointer, e.g.

MOV #data 16

2. Mathematical operations.

• Add, subtract, multi, divi, rotate, swap, and, or etc.

3. Control operations.

• Call, jump, ret etc.

4. Bit operations.

• CLR, SETB, CPL, ANL

• 8 addressing mode

1. Bank addressing, MOV A, Rn

• Rn is R0 to R7 of the currently selected bank.

2. Direct addressing, MOV A, direct

• “direct” is an internal data memory location pointed by 8 bit

3. Register indirect addressing, MOV A, @Ri

• Ri is either R0 or R1 of the currently selected bank

4. Immediate addressing

• 8 bit addressing, MOV A, #data

5. 16-bit absolute addressing, LCALL addr 16

• Addr 16 is a 16 bit absolute address in 64K locations

6. 11 bit relative addressing, ACALL addr 11

• Addr 11 is a 11 bit address relative to current PC value

7. 8 bit offset addressing, JZ rel

• rel is an 8 bit offset added to current PC value.

8. Bit addressing, SETB bit

Addressing modes

Bank Addressing

• Data can be moved among the registers of the current Bank, A and B.

• MOV A, B

• MOV A, R0

• MOV R0, R5

• MOV R1, A

• ADD A, R3

Direct Addressing Mode

MOV A, direct

 “direct” is an internal data memory location pointed by 8 bit.

 All 128 bytes of internal RAM and SFRs may be accessed.

MOV A, 7Fh ; /* copy data from RAM location 7F to Accumulator */

MOV A, 0Dh ; /* note leading 0, instead of writing Dh */

Similarly,

MOV address, A

MOV register, address

MOV address, register

MOV address1, address2

MOV address, #value; /* value is 8 bit number */

Indirect Addressing Mode
• Sometimes called register indirect addressing mode.

• MOV A, @Ri

• Uses register R0 or R1 only.

MOV A, @R1; /* copy data from memory location pointed to by R1 */

MOV @R0, #n; /* copy n to memory location pointed to by R0 */

MOV @R1, address; /*copy between address and address in R1 */

MOV @Ri, B;

Note: content of R0 or R1 must be an address of RAM locations or SFR.

Invalid instructions:

MOV @Ri, @Rj

Immediate addressing

• Values can be directly loaded to any of the registers A, B or R0 – R7. # is

a must.

o MOV R0, #9Fh

o MOV A, #0F1h ; /* note preceding 0 of the value */

o MOV A, #5h ; /* it is actually read as #05h */

o MOV A, #56;

o MOV A, #0x15;

External Data Moves
• From External RAM

MOVX A, @Rp; /* copy data to A from external RAM location in Rp */

MOVX A, @DPTR; /* copy data from location in DPTR */

• Must involve A register.

• Rp can address 256 bytes

• DPTR can address 64K bytes

• From external code memory Read-only moves

MOVC A, @A+DPTR; /* copy the code byte found at address formed by adding A and

DPTR, to A */

MOVC A, @A+PC ; /* address formed by A and program counter */

Note: must involve A register

Code Writing Style

ORG 0H; means program starts at 0000H location

Again: MOV R5, # 25H; load 25H to R5

ADD A, R5; Add the R5 with Acc

SJMP Again; short jump to again

END;

Types of Instruction

• Arithmetic

– ADD, SUBB, INC, DEC, MUL AB, DIV AB

• Branch

– ACALL addr16; absolute subroutine call with a 16bit address

– SJMP rel; short jump from -128 to +127, relative present location

– JC rel; Jump if Carry is set, short jum

– JB bit, rel; Jump if direct bit is set; short jump

– CJNE A,direct,rel; Compares direct byte to the accumulator and jumps if not
equal.

• Data Transfer

– MOV direct, direct;

– MOVX A, @Ri ; get content from external RAM pointed to by Ri

– XCH A,Rn; Exchanges the register with the accumulator

– XCH A,@Ri; Exchanges the indirect RAM with the accumulator

• Logic

– ANL A,Rn; AND register to accumulator

– ANL A,direct; AND direct byte to accumulator

– ANL A,#data; AND immediate data to accumulator

– ORL, XRL

– CLR A; Clears the accumulator

– CPL A; Complements the accumulator (1=0, 0=1)

– RL A Rotates bits in the accumulator left

– RR A

– RLC, RRC

• Bit-oriented

– CLR C; Clears the carry flag

– CLR bit; Clears the direct bit

– SETB C, SETB bit etc.

– CPL C; Complements the carry flag

– CPL bit; Complements the direct bit

– ANL C,bit. ORL C,bit

Generating Square-Wave

HERE : SETB P1.0 (Make bit of Port 0 High)

LCALL DELAY

CLR P1.0

LCALL DELAY

SJMP HERE : Keep doing it

Here same delay is used for both

High & low. DELAY subroutine is assumed somewhere in the program

Bank Selection

• Bank 0 is default.

• RS1 and RS0 in PSW are used for Bank

selected. PSW.4 ->RS1, PSW.3->RS0

• SETB PSW.4 and SETB PSW.3 commands are

used.

• If PSW.4=0 and PSW.3=1 Bank 1 is selected.

CSE 477
8051 Overview 65

Ports

• Port 0 - external memory access

– low address byte/data

• Port 2 - external memory access

– high address byte

• Port 1 - general purpose I/O

– pins 0, 1 for timer/counter 2

• Port 3 - Special features

– 0 - RxD: serial input

– 1 - TxD: serial output

– 2 - INT0: external interrupt

CSE 477
8051 Overview 66

Ports

CSE 477
8051 Overview 67

Ports

• Port 0 - true bi-directional

• Port 1-3 - have internal pullups that will

source current

• Output pins:

– Just write 0/1 to the bit/byte

• Input pins:

– Output latch must have a 1 (reset state)

• Turns off the pulldown

• pullup must be pulled down by external driver

– Just read the bit/byte

CSE 477
8051 Overview 68

Program Status Word

• Register set select

• Status bits

Basics of serial communication

Basics of serial communication

Serial versus Parallel Data Transfer

Introduction

There are several popular types of serial communications.
Here are a few worth noting:

• RS232. Peer-to-peer (i.e. communications between two
devices)

• RS485. Multi-point (i.e. communications between two or
more devices)

• USB (Universal Serial Bus). Replaced RS232 on desktop
computers.

• CAN (Controller Area Network). Multi-point. Popular in
the automotive industry.

• SPI (Serial Peripheral Interface). Developed by Motorola.
Synchronous master/slave communications.

• I2C (Inter-Integrated Circuit).Developed by Philips. Multi-
master communications.

• The Silicon Laboratories 8051 development kit used in this
book supports RS232, SPI and I2C communications. An
RS232 serial port is included on most 8051 microcontrollers.
It is usually listed on the datasheet as UART.

• When we talk about serial communications, what do we
really mean? How is the data transmitted? Serial data is
transmitted between devices one bit at a time using agreed
upon electrical signals. In our C programs though, we read
and write bytes to the serial port – not bits. To accomplish
the necessary translation between bytes and bits, another
piece of hardware is required – the UART.

UARTs and Transceivers

• UART (pronounced “You Art”) is an industry acronym that
stands for Universal Asynchronous Receiver Transmitter. It
is the interface circuitry between the microprocessor and the
serial port. This circuitry is built in to the 8051
microcontroller.

• The UART is responsible for breaking apart bytes of data
and transmitting it one bit at a time (i.e. serially). Likewise,
the UART receives serialized bits and converts them back
into bytes. In practice, it’s a little more complicated, but
that’s the basic idea.

• The UART, however, doesn’t operate at the line voltages
required by the RS232 standard. The UART operates at TTL
voltage levels (i.e. 0 to 5V). For noise immunity and
transmission length, the RS232 standard dictates the
transmission of bits at a higher voltage range and different
polarities (i.e. typically -9V to +9V). An external
transceiver chip is needed.

• Binary 0: UART: 0V RS232: 3-25V

• Binary 1: UART: 5V RS232 -3V to -25V

8051 and DS275 RS-232 Transceiver

Vd

J2 Connector

P0.1

P0.0

42

39

Vd

1

Silicon

Laboratories

8051

Microcontroller

GND

39

Rx
1

Tx
3

Rx

Tx

7

5

Vcc

2 8

GND

4

Vdrv

DS275

RS-232

Transceiver

GND

Vd

Tx
3

Rx
2

5
GND

PC

(9-pin)

• UART communications is asynchronous (i.e. not
synchronous). This means that there is no master clock used
for timing data transfer between devices.

• The UART is also responsible for baud rate generation. This
determines the speed at which data is transmitted and
received. One baud is one bit per second (bps). As of this
writing, data rates can reach up to 230,400 baud. The cable
length between devices is limited by the baud rate -- the
higher the speed, the shorter the cable. The RS-232C
standard only permits transmission speeds up to 19200 baud
with a cable length of 45 feet. With modern UARTs,
230,400 baud can be achieved with a short cable length of a
few feet.

Configuring the Serial Port

• The 8051 serial port is configured and accessed using a
group of SFRs (Special Function Registers).

4 UART operational modes

SM0 SM1 Serial Mode Baud Rate Device

0 0 0 0 (Sync.)

half duplex,

Oscillator/12

(fixed)

8-bit shift register

1 0 1 1(Async)

full duplex

Set by Timer 1 8-bit UART

2 1 0 2(Sync)

half duplex

Oscillator/64

(fixed)

9-bit UART

3 1 1 3(Async)

full duplex

Set by Timer 1 9-bit UART

We focus on mode 0 and mode1 because mode 2 and mode 3 are

not often used.

TXD(P3.1)

RXD(P3.0)

RXD

TXD

COM port of PC or device8051

• Another job of the UART is to frame the byte of data that is
serialized and transmitted. There is always one start bit (set to 0)
and one stop bit (set to 1). Looking at it another way, for every
byte of data, 10 bits are transmitted.

Start and stop bits

SFRs

SCON (Serial Port Control)

SBUF (Serial Data Buffer)

IE (Interrupt Enable)

IP (Interrupt Priority)

UARTEN (UART Enable)

SMOD (Serial Port Baud Rate
Doubler Enable)

Description

RI (Receive Interrupt). SCON.0
TI (Transmit Interrupt). SCON.1
REN (UART Receive Enable). SCON.4
SM0 and SM1 (UART Operation Mode). SCON.6, SCON.7

This is a one-byte buffer for both receive and transmit.

ES (Enable Serial). IE.4
Set the bit to 1 to enable receive and transmit interrupts.

PS (Priority Serial). IP.4
Set the bit to 0 for a low priority or 1 for a high priority.

XBR0.2 (Port I/O Crossbar Register 0, Bit 2)

PCON (Power Control Register). PCON.7
Set the bit to 1 to double the baud rate defined by serial port

mode in SCON.

Setting the Baud Rate

The baud rate is a combination of factors:

• UART mode.

• The crystal frequency.

• The number of ticks required by the 8051 to complete a
simple instruction. This varies from 1 to 12. For the 8051
microcontroller used in this book, the value is 1.

• The setting of the SMOD bit (i.e. normal or double baud
rate).

• The reload value for the Timer.

• RS232 works in a restricted range of baud rates: 75, 110, 300,
1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 56000,
115200 and 230400. With the UART operating in mode 1, the
baud rate will be generated based on a formula using the factors
listed above

Baud rate(Mode1)=(2SMOD*Frequencyosc)/(32*Instructions*cycle(256-TRV))

Baud rate
Where:
• SMOD is the normal/double baud rate bit.
• Frequency Oscillator is the clock rate in hertz.
• Instruction Cycle is the machine instruction executed each clock

cycle. It is one for the 8051 microcontroller used in this book.
For comparison, the original 8051 by Intel used 12 clock cycles
for each instruction.

• TRV is the reload value for the timer.

Baud Summary

• Set the UART operational mode to 1. (SCON.6 = 1,
SCON.7 = 0)

• Set the REN bit to enable UART receive. (SCON.4 = 1)

• Set the UART enable bit (UARTEN) in the XBR0 register.
(XBR0.2 = 1)

• Set the bit for normal or double baud rate (SMOD) in the
PCON register. (PCON.7 = 1 for double)

• Determine the TRV (Timer Reload Value) based on
crystal frequency and desired baud rate.

Reading and Writing

• After all that we went through to configure the port, reading
and writing bytes is easy. We simply read from and write to
the SBUF register. For example:

• inByte = SBUF; // Read a character from the UART

• SBUF = outByte; // Write a character to the UART

• The register SBUF is used for both reading and writing
bytes. Internally, there are two separate registers. They are
both represented as SBUF for the convenience of the
programmer.

• The SBUF register (both transmit and receive) can only
hold one byte. How do you know when the byte that you
wrote to the port has been transmitted? Conversely, how do
you know when a byte is available?

• There are ways to handle this using time delays and polling.
If your application is simple enough, you may be able to get
away with it.

• The best solution to the problem, however, is to use
interrupts. The two interrupts we are interested in are TI
(Transmit Interrupt) and RI (Receive Interrupt).

Handshaking

• The 8051 only has a one-byte buffer – SBUF. In contrast, a
typical PC serial port with a UART with 16-byte buffer.

• If SBUF is not serviced “quickly” enough, an incoming byte
may overwrite a byte that has not yet been read and
processed. Using a control technique called handshaking, it
is possible to get the transmitting device to stop sending
bytes until the 8051 is ready.

• Likewise, the 8051 can be signaled by the receiving device
to stop transmitting. There are two forms of handshaking –
software and hardware.

• Software handshaking (also called XON/XOFF) uses
control characters in the byte stream to signal the halting
and resuming of data transmission. Control-S (ASCII 19)
signals the other device to stop sending data. Control-Q
(ASCII 17) signals the other device to resume sending data.
The disadvantage with this approach is that the response
time is slower and two characters in the ASCII character set
must be reserved for handshaking use.

• Hardware handshaking uses additional I/O lines. The most
common form of hardware handshaking is to use two
additional control wires called RTS (Ready to Send) and
CTS (Clear to Send). One line is controlled by each device.
The line (either RTS or CTS) is asserted when bytes can be
received and unasserted otherwise. These two handshaking
lines are used to prevent buffer overruns.

Data communication classification

Typically, the connector is “male” for DTE
equipment and “female” for DCE equipment.

RS232 DB9 pin D-SUB male connector

• There are two other less commonly used lines – DTR (Data
Terminal Ready) and DSR (Data Set Ready). These lines
are typically used by devices signaling to each other that
they are powered up and ready to communicate.

• To summarize, RTS/CTS are used for buffer control and
DTS/DSR are used for device present and working
indicators. In practice, serial communication with no
handshaking uses 3 wires (TX, RX and GND). Serial
communications with basic hardware handshaking uses 5
wires (TX, RX, RTS, CTS and GND).

DTE (Data Terminal Equipment) and
DCE (Data Communications Equipment)

• RS232 is a point-to-point protocol meant to connect two
devices together – terminals and modems. E.g., the PC is the
DTE while the modem is the DCE.

• But what about other types of devices like barcode scanners
and weigh scales that connect to a PC. With respect to the PC,
they are all DCE devices.

• If you take the PC out of the picture, however, that may
change. If you are developing an 8051 application that logs
data from a weigh scale, your 8051 device will become the
DTE. Knowing whether your device is DTE or DCE is
important because it will determine which handshaking line to
control. The DTE controls the RTS and DTR lines. In this case,
point of reference is very important.

Pin Signal Name Direction(DTE DCE)

1 CD (Carrier Detect)
2 RXD (Receive Data)
3 TXD (Transmit Data)
4 DTR (Data Terminal Ready)
5 GND (System Ground)

6 DSR (Data Set Ready)
7 RTS (Request To Send)
8 CTS (Clear To Send)
9 RI (Ring Indicator)

DB9 RS232 serial port on a PC.

• Typically, the connector is “male” for DTE equipment and

“female” for DCE equipment.

RS232 DB9 pin D-SUB male connector

Summary

• This chapter introduced the RS232 serial communications
standard and placed it in context with newer forms of serial
communications. It also discussed the role of the UART and
external transceiver circuits necessary to transmit bits of
data at the proper voltage.

• On the software side, this chapter discussed how to
configure the serial port using the special function registers,
programming using serial communcation transmitter and
receiver and also discussed issues pertaining to baud rate
generation. Finally, reading and writing to the serial port
was addressed and both software and hardware handshaking
concepts were introduced.

LCD AND KEYBOARD

INTERFACING

LCD Operation

 LCD is finding widespread use

replacing LEDs

◦ The declining prices of LCD

◦ The ability to display numbers,

characters, and graphics

◦ Incorporation of a refreshing controller

into the LCD

 Relieving the CPU of the task of refreshing the

LCD

◦ Ease of programming for characters and

graphics

LCD Data Sheet

 One can put data at any location in the

LCD

◦ The following shows address locations

and how they are accessed

 AAAAAAA=000_0000 to 010_0111 for line1

 AAAAAAA=100_0000 to 110_0111 for line2

 The upper address range can go as high as 0100111

for the 40-character-wide LCD

 Corresponds to locations 0 to 39

Keyboard Interfacing

 Keyboards are organized in a matrix

of rows and columns

◦ The CPU accesses both rows and

columns through ports

 With two 8-bit ports, an 8 x 8 matrix of keys can

be connected to a microprocessor

 When a key is pressed, a row and a column

make a contact

 Otherwise, there is no connection between rows and

columns

◦ In IBM PC keyboards, a microcontroller

takes care of hardware and software

interfacing

Keyboard Interfacing (cont.)

 A 4x4 matrix connected to two ports

◦ The rows are connected to an output port

◦ The columns are connected to an input

port

 If no key has been pressed, reading the input

port will yield 1s for all columns

 Since they are all connected to high (Vcc)

 If all the rows are grounded and a key is

pressed, one of the columns will have 0

 Since the key pressed provides the path to ground

◦ It is the function of the microcontroller to

scan the keyboard continuously to detect

and identify the key pressed

Grounding Rows and Reading

Columns

 To detect a pressed key

◦ The microcontroller grounds all rows by

providing 0 to the output latch

◦ Then it reads the columns

 If the data read from columns is D3 – D0 =

1111, no key has been pressed

 The process continues till key press is detected

 If one of the column bits has a zero, this means

that a key press has occurred

 For example, if D3 – D0 = 1101, this means

that a key in the D1 column has been pressed

Grounding Rows and Reading

Columns (cont.)

 After detecting a key press, the

microcontroller will go through the

process of identifying the key

◦ Starting with the top row, the

microcontroller grounds it by providing a

low to row D0 only

 It reads the columns, if the data read is all 1s,

no key in that row is activated

 The process is moved to the next row

◦ It grounds the next row, reads the

columns, and checks for any zero

Grounding Rows and Reading

Columns (cont.)

◦ This process continues until the row is

identified

 After identification of the row in which

the key has been pressed

◦ Find out which column the pressed key

belongs to

Grounding Rows and Reading

Columns (cont.)

 Detection and identification of key

activation goes through the following:

◦ To make sure that the preceding key has

been released, 0s are output to all rows at

once, and the columns are read and

checked repeatedly until all the columns

are high

 When all columns are found to be high, the

program waits for a short amount of time before

it goes to the next stage of waiting for a key to

be pressed

Grounding Rows and Reading

Columns (cont.)

◦ To see if any key is pressed, the columns

are scanned over and over in an infinite

loop until one of them has a 0 on it

 Remember that the output latches connected to

rows still have their initial zeros (provided in

stage 1), making them grounded

 After the key press detection, it waits 20 ms for

the bounce and then scans the columns again

 It ensures that the first key press detection was not an

erroneous one due a spike noise

 If after the 20-ms delay the key is still pressed, it goes

back into the loop to detect a real key press

Grounding Rows and Reading

Columns (cont.)

◦ To detect which row key press belongs to,

it grounds one row at a time, reading the

columns each time

 If it finds that all columns are high, this means

that the key press cannot belong to that row

 It grounds the next row and continues until it finds the

row the key press belongs to

 Upon finding the row that the key press

belongs to, it sets up the starting address for

the look-up table holding the scan codes (or

ASCII) for that row

Grounding Rows and Reading

Columns (cont.)

◦ To identify the key press, it rotates the

column bits, one bit at a time, into the

carry flag and checks to see if it is low

 Upon finding the zero, it pulls out the ASCII

code for that key from the look-up table

 Otherwise, it increments the pointer to point to

the next element of the look-up table

Question Bank(Microcontroller (BELE0-F99)

1. The special function registers are maintained in the next 128 locations after the
general-purpose data storage and stack.

A. True

B. False

Answer: A

2. Which data memory control and handle the operation of several peripherals by
assigning them in the category of special function registers?

a. Internal on-chip RAM
b. External off-chip RAM
c. Both a & b
d. None of the above

ANSWER: (a) Internal on-chip RAM

3. Why is the speed accessibility of external data memory slower than internal on-chip
RAM?

a. Due to multiplexing of lower order byte of address-data bus
b. Due to multiplexing of higher order byte of address-data bus
c. Due to demultiplexing of lower order byte of address-data bus
d. Due to demultiplexing of higher order byte of address-data bus

ANSWER: (a) Due to multiplexing of lower order byte of address-data bus

4. Which operations are performed by the bit manipulating instructions of boolean processor?

a. Complement bit

b. Set bit

c. Clear bit

d. All of the above

ANSWER: (d) All of the above

5. Which control signal/s is/are generated by timing and control unit of 8051
microcontroller in order to access the off-chip devices apart from the internal timings?

a. ALE
b. PSEN

c. RD & WR
d. All of the above

ANSWER: (d) All of the above

6. Which register usually store the output generated by ALU in several arithmetic and
logical operations?

a. Accumulator
b. Special Function Register
c. Timer Register
d. Stack Pointer

ANSWER: (a) Accumulator

7) Which condition approve to prefer the EPROM/ROM versions for mass production in
order to prevent the external memory connections?

a. size of code < size of on-chip program memory
b. size of code > size of on-chip program memory
c. size of code = size of on-chip program memory
d. None of the above

ANSWER: (a) size of code < size of on-chip program memory

8) Which among the below mentioned devices of MCS-51 family does not possess two 16 -
bit timers/counters?

a. 8031
b. 8052
c. 8751
d. All of the above

ANSWER: (b) 8052

9) Which characteristic/s of accumulator is /are of greater significance in terms of its
functionality?

a. Ability to store one of the operands before the execution of an instruction
b. Ability to store the result after the execution of an instruction
c. Both a & b
d. None of the above

ANSWER: (c) Both a & b

10) Which general purpose register holds eight bit divisor and store the remainder
especially after the execution of division operation?

a. A-Register
b. B-Register
c. Registers R0 through R7
d. All of the above

ANSWER: (b) B-Register

11) How many registers can be utilized to write the programs by an effective selection of
register bank in program status word (PSW)?

a. 8
b. 16
c. 32
d. 64

ANSWER: (c) 32

12) Which operations are performed by stack pointer during its incremental phase?

a. Push
b. Pop
c. Return
d. All of the above

ANSWER: (a) Push

13) Which is the only register without internal on-chip RAM address in MCS-51?

a. Stack Pointer
b. Program Counter
c. Data Pointer
d. Timer Register

ANSWER: (b) Program Counter

14) What kind of instructions usually affect the program counter?

a. Call & Jump
b. Call & Return
c. Push & Pop
d. Return & Jump

ANSWER: (a) Call & Jump

15) What is the default value of stack once after the system undergoes the reset condition?

a. 07H
b. 08H
c. 09H
d. 00H

ANSWER:(a) 07H

16) Which bit/s play/s a significant role in the selection of a bank register of Program
Status Word (PSW)?

a. RS1
b. RS0
c. Both a & b
d. None of the above

ANSWER: (c) Both a & b

17) Which flags represent the least significant bit (LSB) and most significant bit (MSB) of
Program Status Word (PSW) respectively?

a. Parity Flag & Carry Flag
b. Parity Flag & Auxiliary Carry Flag
c. Carry Flag & Overflow Flag
d. Carry Flag & Auxiliary Carry Flag

ANSWER: (a) Parity Flag & Carry Flag

18) Which register bank is supposed to get selected if the values of register bank select bits
RS1 & Rs0 are detected to be ‘1’ & ‘0’ respectively?

a. Bank 0
b. Bank 1
c. Bank 2
d. Bank 3

ANSWER: (c) Bank 2

19) It is possible to set the auxiliary carry flag while performing addition or subtraction
operations only when the carry exceeds _______

a. 1st bit
b. 2nd bit
c. 3rd bit
d. 4th bit

ANSWER: (c) 3rd bit

20) Which locations of 128 bytes on-chip additional RAM are generally reserved for
special functions?

a. 80H to 0FFH
b. 70H to 0FFH
c. 90H to 0FFH
d. 60H to 0FFH

ANSWER: (a) 80H to 0FFH

21) Which commands are used for addressing the off-chip data and associated codes
respectively by data pointer?

a. MOVX & MOVC
b. MOVY & MOVB
c. MOVZ & MOVA
d. MOVC & MOVY

ANSWER: (a) MOVX & MOVC

22) Which instruction find its utility in loading the data pointer with 16 bits immediate
data?

a. MOV
b. INC
c. DEC
d. ADDC

ANSWER: (a) MOV

23) What is the maximum capability of addressing the off-chip data memory & off-chip
program memory in a data pointer?

a. 8K
b. 16K
c. 32K
d. 64K

ANSWER: (d) 64K

24) Which among the below stated registers does not belong to the category of special
function registers?

a. TCON & TMOD
b. TH0 & TL0
c. P0 & P1
d. SP & PC

ANSWER: (d) SP & PC

25) Which timer is attributed to the register pair of RCAP2H & RCAP2L for capture
mode operation?

a. Timer 0
b. Timer 1
c. Timer 2
d. Timer 3

ANSWER:(c) Timer 2

26) Which registers are supposed to get copied into RCAP2H & RCAP2L respectively due
to the transition at 8052 T2EX pin in the capture mode operation?

a. TH0 & TH1
b. TH1 & TH1
c. TH2 & TH2
d. All of the above

ANSWER: (c) TH2 & TH2

27) Which mode of timer 2 allow to hold the reload values with an assistance of RCAP2H
& RCAP2L register pair?

a. 8 bit auto-reload mode
b. 16 bit auto reload mode
c. 8 bit capture mode
d. 16 bit capture mode

ANSWER: (b) 16 bit auto reload mode

28) Where should the pin 19 (XTAL1), acting as an input of inverting amplifier as well as
part of an oscillator circuit, be connected under the application of external clock?

a. to XTAL2
b. to Vcc
c. to GND
d. to ALE

ANSWER: (c) to GND

29) Which port does not represent quasi-bidirectional nature of I/O ports in accordance to
the pin configuration of 8051 microcontroller?

a. Port 0 (Pins 32-39)
b. Port 1 (Pins 1-8)
c. Port 2 (Pins 21-28)
d. Port 3 (Pins 10-17)

ANSWER: (a) Port 0 (Pins 32-39)

30) What is the required baud rate for an efficient operation of serial port devices in 8051
microcontroller?

a. 1200
b. 2400
c. 4800
d. 9600

ANSWER: (d) 9600

31) Which among the below mentioned functions does not belong to the category of
alternate functions usually performed by Port 3 (Pins 10-17)?

a. External Interrupts
b. Internal Interrupts
c. Serial Ports
d. Read / Write Control signals

ANSWER: (b) Internal Interrupts

32) What is the constant activation rate of ALE that is optimized periodically in terms of
an oscillator frequency?

a. 1 / 8
b. 1 / 6
c. 1 / 4
d. 1 / 2

ANSWER:(b) 1 / 6

33) Which output control signal is activated after every six oscillator periods while
fetching the external program memory and almost remains high during internal program
execution?

a. ALE
b. PSEN

c. EA
d. All of the above

ANSWER: (b) PSEN

34) Which memory allow the execution of instructions till the address limit of 0FFFH
especially when the External Access (EA) pin is held high?

a. Internal Program Memory
b. External Program Memory
c. Both a & b
d. None of the above

ANSWER: (a) Internal Program Memory

35) Which value of disc capacitors is preferred or recommended especially when the
quartz crystal is connected externally in an oscillator circuit of 8051?

a. 10 pF
b. 20 pF
c. 30 pF
d. 40 pF

ANSWER: (c) 30 pF

36) Why are the resonators not preferred for an oscillator circuit of 8051?

a. Because they do not avail for 12 MHz higher order frequencies
b. Because they are unstable as compared to quartz crystals
c. Because cost reduction due to its utility is almost negligible in comparison to total cost of
microcontroller board
d. All of the above

ANSWER: (d) All of the above

37) Which version of MCS-51 requires the necessary connection of external clock source
to XTAL2 in addition to the XTAL1 connectivity to ground level?

a. HMOS
b. CHMOS
c. CMOS
d. All of the abov

ANSWER: (a) HMOS

38) Which signal from CPU has an ability to respond the clocking value of D- flipflop (bit
latch) from the internal bus?

a. Write-to-Read Signal
b. Write-to-Latch Signal
c. Read-to-Write Signal
d. Read-to-Latch Signal

ANSWER: (b) Write-to-Latch Signal

39) Which among the below mentioned statements are precisely related to quasi-
bidirectional port?

a. Fixed high pull-up resistors are internally connected
b. Configuration in the form of input pulls the port at higher position whereas they get pulled
lower when configured as a source current
c. It is possible to drive the pin as output at any duration when FET gets turned OFF for an input
function
d. Upper pull-up FET is always OFF with the provision of ‘open-drain’ output pin for normal
operation of port

a. A, B, C, D
b. A, B & C
c. A & B
d. C & D

ANSWER: (b) A, B & C

40) What happens when the pins of port 0 & port 2 are switched to internal ADDR and
ADDR / DATA bus respectively while accessing an external memory?

a. Ports cannot be used as general-purpose Inputs/Outputs
b. Ports start sinking more current than sourcing
c. Ports cannot be further used as high impedance input
d. All of the above

ANSWER: (a) Ports cannot be used as general-purpose Inputs/Outputs

41) The upper 128 bytes of an internal data memory from 80H through FFH usually
represent _______.

a. general-purpose registers
b. special function registers
c. stack pointers
d. program counters

ANSWER: (b) special function registers

42) What is the bit addressing range of addressable individual bits over the on-chip
RAM?

a. 00H to FFH
b. 01H to 7FH
c. 00H to 7FH
d. 80H to FFH

ANSWER: (c) 00H to 7FH

43) What is the divisional range of program memory for internal and external memory
portions respectively when enable access pin is held high (unity)?

a. 0000H – 0FFFH & 1000H – FFFFH
b. 0000H – 1000H & 0FFFH – FFFFH
c. 0001H – 0FFFH & 01FFH – FFFFH
d. None of the above

ANSWER: (a) 0000H – 0FFFH & 1000H – FFFFH

44) Consider the following statements. Which of them is/are correct in case of program
execution related to program memory?

a. External Program memory execution takes place from 1000H through 0FFFFH only when the
status of EA pin is high (1)
b. External Program memory execution takes place from 0000H through 0FFFH only when the
status of EA pin is low (0)
c. Internal Program execution occurs from 0000H through 0FFFH only when the status of EA
pin is held low (0)
d. Internal program memory execution occurs from 0000H through 0FFFH only when EA pin is
held high (1)

a. A & C
b. B & D
c. A & B
d. Only A

ANSWER: (b) B & D

45) How does the processor respond to an occurrence of the interrupt?

a. By Interrupt Service Subroutine
b. By Interrupt Status Subroutine

c. By Interrupt Structure Subroutine
d. By Interrupt System Subroutine

ANSWER: (a) By Interrupt Service Subroutine

46) Which address/location in the program memory is supposed to get occupied when
CPU jump and execute instantaneously during the occurrence of an interrupt?

a. Scalar
b. Vector
c. Register
d. All of the above

ANSWER: (b) Vector

47) Which location specify the storage/loading of vector address during the interrupt
generation?

a. Stack Pointer
b. Program Counter
c. Data Pointer
d. All of the above

ANSWER: (b) Program Counter

48) Match the following :

a. ISS —————————– 1. Monitors the status of interrupt pin
b. IER —————————– 2. Allows the termination of ISS
c. RETI ————————— 3. MCS-51 Interrupts Initialization
d. INTO ————————– 4. Occurrence of high to low transition level

a. A-1, B-2, C-3, D-4
b. A-3, B-2, C-4, D-1
c. A-1, B-3, C-2, D-4
d. A-4, B-3, C-2, D-1

ANSWER:(c) A-1, B-3, C-2, D-4

49) What kind of triggering configuration of external interrupt intimate the signal to stay
low until the generation of subsequent interrupt?

a. Edge-Triggering
b. Level Triggering
c. Both a & b
d. None of the above

ANSWER: (b) Level Triggering

50) Which among the below mentioned reasons is/are responsible for the generation of
Serial Port Interrupt?

a. Overflow of timer/counter 1
b. High to low transition on pin INT1
c. High to low transition on pin INT0
d. Setting of either TI or RI flag

a. A & B
b. Only B
c. C & D
d. Only D

ANSWER: (d) Only D

51) What is the counting rate of a machine cycle in correlation to the oscillator frequency
for timers?

a. 1 / 10
b. 1 / 12
c. 1 / 15
d. 1 / 20

ANSWER: (b) 1 / 12

52) Which special function register play a vital role in the timer/counter mode selection
process by allocating the bits in it?

a. TMOD
b. TCON
c. SCON
d. PCON

ANSWER:(a) TMOD

53) How many machine cycle/s is/are executed by the counters in 8051 in order to detect
‘1’ to ‘0’ transition at the external pin?

a. One
b. Two
c. Four
d. Eight

ANSWER: (b) Two

54) Which bit must be set in TCON register in order to start the ‘Timer 0’ while operating
in ‘Mode 0’?

a. TR0
b. TF0
c. IT0
d. IE0

ANSWER: (a) TR0

55. Which among the following control/s the timer1 especially when it is configured as a
timer in mode’0′, where gate and TR1 bits are attributed to be ‘1” in TMOD register?

a. TR1
b. External input at (INT1)
c. TF1
d. All of the above

ANSWER: (b) External input at (INT1)

56) Which timer mode exhibit the necessity to generate the interrupt by setting EA bit in
IE enhancing the program counter to jump to another vector location?

a. Mode 0
b. Mode 1
c. Mode 2
d. Mode 3

ANSWER: (b) Mode 1

57. Which among the below mentioned program segments represent the correct code?

a. MOV SP, # 54 H
MOV TCON ,# 0010 0000 C
SETC ET1
SETC TR0
SJMP $
b. MOV SP, # 54H
MOV TMOD ,# 0010 0000 C
SETC ET0
SETC TR0
SJMP $
c. MOV SP, # 54 H
MOV TMOD ,# 0010 0000 C
SETC ET1
SETC TR1

SETC EA
SJMP $
d. MOV SP, # 54 H
MOV TMOD ,# 0010 0000 C
SETC ET0
SETC TR1
SETC EA
SJMP $

ANSWER: (c)

MOV SP, # 54 H
MOV TMOD ,# 0010 0000 C
SETC ET1
SETC TR1
SETC EA
SJMP $

58) What is the maximum delay generated by the 12 MHz clock frequency in accordance
to an auto-reload mode (Mode 2) operation of the timer?

a. 125 μs
b. 250 μs
c. 256 μs
d. 1200 μs

ANSWER: (c) 256 μs

59) Which among the below mentioned sequence of program instructions represent the
correct chronological order for the generation of 2kHz square wave frequency?

1. MOV TMOD, 0000 0010 B

2. MOV TL0, # 06H

3. MOV TH0, # 06H

4. SETB TR0

5. CPL p1.0

6. ORG 0000H

a. 6, 5, 2, 4, 1, 3
b. 6, 1, 3, 2, 4, 5

c. 6, 5, 4, 3, 2, 1
d. 6, 2, 4, 5, 1, 3

ANSWER: (b) 6, 1, 3, 2, 4, 5

60) Why is it not necessary to specify the baud rate to be equal to the number of bits per
second?

a. Because each bit is preceded by a start bit & followed by one stop bit
b. Because each byte is preceded by a start byte & followed by one stop byte
c. Because each byte is preceded by a start bit & followed by one stop bit
d. Because each bit is preceded by a start byte &followed by one stop byte

ANSWER: (c) Because each byte is preceded by a start bit & followed by one stop bit

61. Why is CHMOS technology preferred over HMOS technology for designing the devices
of MCS-51 family?

a. Due to higher noise immunity
b. Due to lower power consumption
c. Due to higher speed
d. All of the above

ANSWER: (d) All of the above

62. MOV A, @ R1 will:
A. copy R1 to the accumulator
B. copy the accumulator to R1
C. copy the contents of memory whose address is in R1 to the accumulator
D. copy the accumulator to the contents of memory whose address is in R1

Answer: Option C

