
What do computers do?

– Take an input, process, and produce correct output.

• What is input?

A finite string on a finite alphabet (a set of characters).

• What is Output?

“Input processed successfully,” Or “not”.

• In other words: True / False.

1

Alphabet and Strings

• Symbol – An atomic unit, such as a digit, character, lower-case letter, etc.
Sometimes a word. [Formal language does not deal with the “meaning” of the
symbols.]

• Alphabet – A finite set of symbols, usually denoted by Σ.

Σ = {0, 1} Σ = {0, a, , 4} Σ = {a, b, c, d}

• String – A finite length sequence of symbols, presumably from some alphabet.

u=ε w = 0110 y = 0aa x = aabcaa z = 111

special string: ε (also denoted by λ)

concatenation: wz = 0110111

length: |w| = 4 |x| = 6 but |u| = 0

reversal: yR = aa0
2

• Some special sets of strings:

Σ* All strings of symbols from Σ

Σ+ Σ* - {ε}

• Example:

Σ = {0, 1}

Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,…}

Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,…}

• A (formal) language is:

1) A set of strings from some alphabet (finite or infinite), in other words…

2) any subset L of Σ*

• Some special languages:

{} The empty set/language, containing no strings

{ε} A language containing one string, the empty string.

3

Formal Language

• Finite set of alphabet Σ:

e.g., {0, 1}, {a, b, c}, { ‘{‘, ‘}’ }

• Language L is a subset of strings on Σ,

• e.g., {00, 110, 01} a finite language,

• or, {strings starting with 0} an infinite language

• Σ* is a special language with all possible strings on Σ

4

Finite State Machine

……..

• Tape, broken into cells

• Tape head.

• Finite control, i.e., a program, containing the position of the read head,
current symbol being scanned, and the current “state”, etc.

• A string is placed on the tape, read head is positioned at the left end,
and the machine reads the string one symbol at a time until all symbols
have been read,

• and then either accepts or rejects the input (to be in the language or
not)

5

Finite

Control

0 1 1 0 0

Hierarchy of languages

6

Regular Languages

Context-Free Languages

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

Grammar ?
•Describes underlying rules (syntax) of
programming languages

Compilers (parsers) are based on such
descriptions

•More expressive than regular
expressions/finite automata

•Context-free grammar (CFG) or just
grammar

7

Grammar and its Chomsky

Classification
• We’ll cover three types of structures used in modeling computation:

• Grammars

• Used to generate sentences of a language and to determine if a given sentence is

in a language

• Formal languages, generated by grammars, provide models for programming

languages (Java, C, etc) as well as natural language --- important for constructing

compilers

• Finite-state machines (FSM)

• FSM are characterized by a set of states, an input alphabet, and transitions that

assigns a next state to a pair of state and an input. We’ll study FSM with and

without output. They are used in language recognition (equivalent to certain

grammar)but also for other tasks such as controlling vending machines

• Turing Machine – they are an abstraction of a computer; used to compute number

theoretic functions

8

Intro to Languages

• English grammar tells us if a given combination of words is a valid sentence.

• The syntax of a sentence concerns its form while the semantics concerns

its meaning.

e.g. the mouse wrote a poem

• From a syntax point of view this is a valid sentence.

• From a semantics point of view not so fast…perhaps in Disney land

• Natural languages (English, French, Portguese, etc) have very complex rules

of syntax and not necessarily well-defined.

9

Formal Language

• Formal language – is specified by well-defined set of rules of syntax

We describe the sentences of a formal language using a grammar.

• Two key questions:

1 - Is a combination of words a valid sentence in a formal language?

2 – How can we generate the valid sentences of a formal language?

• Formal languages provide models for both natural languages and programming

languages.

10

Grammars

• A formal grammar G is any compact, precise
mathematical definition of a language L.

– As opposed to just a raw listing of all of the language’s
legal sentences, or just examples of them.

• A grammar implies an algorithm that would
generate all legal sentences of the language.

– Often, it takes the form of a set of recursive definitions.

• A popular way to specify a grammar recursively is
to specify it as a phrase-structure grammar.

Grammars (Semi-formal)

• Example: A grammar that generates a subset of the English language

12

verbpredicate

nounarticlephrasenoun

predicatephrasenounsentence

→

→

→

_

_

• A derivation of “a dog runs”:

13
runsdoga

verbdoga

verbnouna

verbnounarticle

verbphrasenoun

predicatephrasenounsentence













_

_

Basic Terminology

► A vocabulary/alphabet, V is a finite nonempty set of elements
called symbols.

• Example: V = {a, b, c, A, B, C, S}

► A word/sentence over V is a string of finite length of elements of
V.

• Example: Aba

► The empty/null string, λ is the string with no symbols.

► V* is the set of all words over V.

• Example: V* = {Aba, BBa, bAA, cab …}

► A language over V is a subset of V*.

• We can give some criteria for a word to be in a language.

Analytical Definition of grammar

A grammar is a 4-tuple G = (V,T,P,S)

• V: set of variables or nonterminals

• T: set of terminal symbols (terminals)

• P: set of productions

– Each production: head → body, where head is
a variable, and body is a string of zero or more
terminals and variables

• S: a start symbol from V

15

Grammar OR Phrase-Structure

Grammars
• A phrase-structure grammar (abbr. PSG)

G = (V,T,S,P) is a 4-tuple, in which:
– V is a vocabulary (set of symbols)

• The “template vocabulary” of the language.

– T  V is a set of symbols called terminals
• Actual symbols of the language.

• Also, N :≡ V − T is a set of special “symbols” called
nonterminals. (Representing concepts like “noun”)

– SN is a special nonterminal, the start symbol.
• in our example the start symbol was “sentence”.

– P is a set of productions (to be defined).
• Rules for substituting one sentence fragment for another

• Every production rule must contain at least one nonterminal on
its left side.

Example 1:

Assignment statements

• V = { S, E }, T = { i, =, +, *, n }

• Productions:

S → i = E

E → n

E → i

E → E + E

E → E * E

17

Derivation

• Definition

• Let G=(V,T,S,P) be a phrase-structure grammar.

• Let w0=lz0r (the concatenation of l, z0, and r) w1=lz1r be strings over V.

• If z0 → z1 is a production of G we say that w1 is directly derivable from w0

and we write wo => w1.

• If w0, w1, …., wn are strings over V such that w0 =>w1,w1=>w2,…, wn-1 =>

wn, then we say that wn is derivable from w0, and write w0=>*wn.

• The sequence of steps used to obtain wn from wo is called a derivation.

L(G): Language of a grammar

• Definition: Given a grammar G, and a string w

over the alphabet T, S *
G w if there is a

sequence of productions that derive w

• L(G) = { w in T* | S *
G w },

the language of the grammar G

20

Leftmost vs rightmost derivations

• Leftmost derivation: the leftmost variable is
always the one replaced when applying a
production

– Example: S  i = E  i = E + E
 i = n + E  i = n + n

• Rightmost derivation: rightmost variable is
replaced

– Example: S  i = E  i = E + E
 i = E + n  i = n + n

Sentential forms

• In a derivation, assuming it begins with S, all

intermediate strings are called sentential forms of

the grammar G

• Example: i = E and i = E + n are sentential forms

of the assignment statement grammar

• The sentential forms are called leftmost

(rightmost) sentential forms if they are a result of

leftmost (rightmost) derivations

Parse trees

• Recall that a tree in graph theory is a set of nodes
such that

– There is a special node called the root

– Nodes can have zero or more child nodes

– Nodes without children are called leaves

– Interior nodes: nodes that are not leaves

• A parse tree for a grammar G is a tree such that the
interior nodes are non-terminals in G and children
of a non-terminal correspond to the body of a
production in G

Yield of a parse tree

• Yield: concatenation of leaves from left to right

• If the root of the tree is the start symbol, and all
leaves are terminal symbols, then the yield is a
string in L(G)

• A derivation always corresponds to some parse
tree

Language

• Let G(V,T,S,P) be a phrase-structure grammar. The

language generated by G (or the language of G)

denoted by L(G) , is the set of all strings of terminals

that are derivable from the starting state S.

L(G)= {w  T* | S =>*w}

25

Language L(G)

► EXAMPLE:

• Let G = (V, T, S, P), where V = {a, b, A, S}, T = {a, b}, S is a start
symbol and P = {S → aA, S → b, A → aa}.

• The language of this grammar is given by L (G) = {b, aaa};

1. we can derive aA from using S → aA, and then derive aaa using A →
aa.

2. We can also derive b using S → b.

Another example

• Grammar:

• Derivation of sentence :

27

→

→

S

aSbS

abaSbS 

ab

aSbS → →S

G=(V,T,S,P) P = T={a,b}

V={a,b,S}

• Grammar:

• Derivation of sentence :

28

aabbaaSbbaSbS 

aSbS → →S

aabb

→

→

S

aSbS

• Other derivations:

29

aaabbbaaaSbbbaaSbbaSbS 

aaaabbbbaaaaSbbbb

aaaSbbbaaSbbaSbS





So, what’s the language of the

grammar with the productions?

→

→

S

aSbS

Types of Grammars -

Chomsky hierarchy of languages

• Venn Diagram of Grammar Types:

Type 0 – Phrase-structure Grammars

Type 1 –

Context-Sensitive

Type 2 –

Context-Free

Type 3 –

Regular

•

Fall 2006

Regular Languages

}0:{ nba nn }{ Rww

**ba *)(ba +

Context-Free Languages

Fall 2006

Context-Free Languages

Pushdown

Automata

Context-Free

Grammars

stack

automaton

Grammar

Productions of the form:

xA→
String of variables

and terminals

),,,(PSTVG =

Vocabulary Terminal

symbols

Start

variable

Non-Terminal

Definition: Context-Free Grammars

Derivation Tree of A Context-free Grammar

► Represents the language using an ordered rooted tree.

► Root represents the starting symbol.

► Internal vertices represent the nonterminal symbol that

arise in the production.

► Leaves represent the terminal symbols.

► If the production A → w arise in the derivation, where w

is a word, the vertex that represents A has as children

vertices that represent each symbol in w, in order from

left to right.

• A language is context-free

• if there is a context-free grammar

• with

Fall 2006

L
G

)(GLL =

Context-Free Language:

Fall 2006

37

||bSbaSaS →

abbaabSbaaSaS 

Context-free grammar : G

Example derivations:

abaabaabaSabaabSbaaSaS 

=)(GL }*},{:{ bawwwR 

Palindromes of even length

Another Example

Derivation Order

and

Derivation Trees

Fall 2006

Costas Busch - RPI 38

Derivation Order

•

Fall 2006

Costas Busch - RPI 39

Consider the following example grammar

with 5 productions:

ABS →.1

→

→

A

aaAA

.3

.2

→

→

B

BbB

.5

.4

Ambiguity

Fall 2006

Costas Busch - RPI 40

Fall 2006

Costas Busch - RPI 41

Grammar for mathematical expressions

))(()(aaaaaaa ++++

Example strings:

Denotes any number

aEEEEEE |)(|| +→

Fall 2006

Costas Busch - RPI 42

A leftmost derivation

for

aaa +

E

EE

EE

+

a

a a



aaaEaa

EEaEaEEE

*++

+++

aEEEEEE |)(|| +→

Fall 2006

Costas Busch - RPI 43

E

EE

+

a a



EE a

aaaEaa

EEaEEEEEE

++

++

Another

leftmost derivation

for

aEEEEEE |)(|| +→

aaa +

Fall 2006

Costas Busch - RPI 44

aaa + E

EE

+

a a



EE a

E

EE

EE

+

a

a a



Two derivation trees

for

aEEEEEE |)(|| +→

Fall 2006

Costas Busch - RPI 45

E

EE

+



EE

E

EE

EE

+

2

2 2 2 2

2

222 +=+ aaa

take 2=a

Fall 2006

Costas Busch - RPI 46

E

EE

+



EE

E

EE

EE

+



6222 =+

2

2 2 2 2

2

8222 =+

4

2 2

2

6

2 2

24

8

Good Tree Bad Tree

Compute expression result

using the tree

Fall 2006

Costas Busch - RPI 47

Two different derivation trees

may cause problems in applications which

use the derivation trees:

• Evaluating expressions

• In general, in compilers

for programming languages

Fall 2006

Costas Busch - RPI 48

Ambiguous Grammar:

A context-free grammar is ambiguous

if there is a string which has:

two different derivation trees

or

two leftmost derivations

G

)(GLw

(Two different derivation trees give two

different leftmost derivations and vice-versa)

Fall 2006

Costas Busch - RPI 49

E

EE

+

a a



EE a

E

EE

EE

+

a

a a



string aaa + has two derivation trees

aEEEEEE |)(|| +→

this grammar is ambiguous since

Example:

Fall 2006

Costas Busch - RPI 50

string aaa + has two leftmost derivations

aaaEaa

EEaEEEEEE

++

++

aaaEaa

EEaEaEEE

*++

+++

aEEEEEE |)(|| +→

this grammar is ambiguous also because

Fall 2006

Costas Busch - RPI 51

IF_STMT if EXPR then STMT→

| if EXPR then STMT else STMT

Another ambiguous grammar:

Variables Terminals

Very common piece of grammar

in programming languages

Fall 2006

Costas Busch - RPI 52

If expr1 then if expr2 then stmt1 else stmt2

IF_STMT

expr1 then

elseif expr2 then

STMT

stmt1

if

IF_STMT

expr1 then else

if expr2 then

STMT stmt2if

stmt1

stmt2

Two derivation trees

Fall 2006

Costas Busch - RPI 53

In general, ambiguity is bad

and we want to remove it

Sometimes it is possible to find

a non-ambiguous grammar for a language

But, in general we cannot do so

Fall 2006

Costas Busch - RPI 54

aE

EE

EEE

EEE

→

→

→

+→

)(
aEF

FFTT

TTEE

|)(

|

|

→

→

+→

Ambiguous

Grammar Non-Ambiguous

Grammar

Equivalent

generates the same

language

A successful example:

Fall 2006

Costas Busch - RPI 55

aaaFaaFFa

FTaTaTFTTTEE

+++

+++++

E

E T+

T  F

F

a

T

F

a

a

aEF

FFTT

TTEE

|)(

|

|

→

→

+→

Unique

derivation tree

for

aaa +

Example: Derivation Tree

► Let G be a context-free grammar with the productions

P = {S →aAB, A →Bba, B →bB, B →c}. The word w =

acbabc can be derived from S as follows:

S⇒ aAB →a(Bba)B ⇒ acbaB ⇒ acba(bB) ⇒ acbabc

Thus, the derivation tree is given as follows:

S

a A B

B b a

c

b B

c

Deterministic Finite State Automata (DFA)

……..

• One-way, infinite tape, broken into cells

• One-way, read-only tape head.

• Finite control, i.e.,
– finite number of states, and

– transition rules between them, i.e.,

– a program, containing the position of the read head, current symbol being scanned,
and the current “state.”

• A string is placed on the tape, read head is positioned at the left end,
and the DFA will read the string one symbol at a time until all symbols
have been read. The DFA will then either accept or reject the string. 57

Finite

Control

0 1 1 0 0

Formal Definition of a DFA

• A DFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to Q

δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, and

δ(q,s) = q’ is equal to some state q’ in Q, could be q’=q

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state
q.

58

• Revisit example #1:

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ:

0 1

q0 q1 q0

q1 q0 q1

59

q0
q1

0

0

1

1

• Revisit example #2:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

• Since δ is a function, at each step M has exactly one option.

• It follows that for a given string, there is exactly one computation.

60

q1q0
q2

a

b

a

b

c c

a/b/c

Extension of δ to Strings

δ^ : (Q x Σ*) –> Q

δ^(q,w) – The state entered after reading string w having started in state q.

Formally:

1) δ^(q, ε) = q, and

2) For all w in Σ* and a in Σ

δ^(q,wa) = δ (δ^(q,w), a)

61

• Recall Example #1:

• What is δ^(q0, 011)? Informally, it is the state entered by M after
processing 011 having started in state q0.

• Formally:

δ^(q0, 011) = δ (δ^(q0,01), 1) by rule #2

= δ (δ (δ^(q0,0), 1), 1) by rule #2

= δ (δ (δ (δ^(q0, λ), 0), 1), 1) by rule #2

= δ (δ (δ(q0,0), 1), 1) by rule #1

= δ (δ (q1, 1), 1) by definition of δ

= δ (q1, 1) by definition of δ

= q1 by definition of δ

• Is 011 accepted? No, since δ^(q0, 011) = q1 is not a final state. 62

q0
q1

0

0

1

1

• Notes:

– A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and

Σ* - L(M).

– If L = L(M) then L is a subset of L(M) and L(M) is a subset of L (def. of set
equality).

– Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset
of L(M1).

– Some languages are regular, others are not. For example, if

Regular: L1 = {x | x is a string of 0's and 1's containing an even
number of 1's} and

Not-regular: L2 = {x | x = 0n1n for some n >= 0}

• Can you write a program to “simulate” a given DFA, or any arbitrary input DFA?

• Question we will address later:

– How do we determine whether or not a given language is regular?

63

• Give a DFA M such that:

L(M) = {x | x is a string of 0’s and 1’s and |x| >= 2}

Prove this by induction

64

q1q0
q2

0/1

0/1

0/1

• Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s such

that x does not contain the substring aa}

Logic:

In Start state (q0): b’s and c’s: ignore – stay in same state

q0 is also “accept” state

First ‘a’ appears: get ready (q1) to reject

But followed by a ‘b’ or ‘c’: go back to start state q0

When second ‘a’ appears after the “ready” state: go to reject state q2

Ignore everything after getting to the “reject” state q2
65

q2q0

a

a/b/c

a
q1

b/c

b/c

• Give a DFA M such that:

L(M) = {x | x is a string of a’s, b’s and c’s such that x

contains the substring aba}

Logic: acceptance is straight forward, progressing on each expected

symbol

However, rejection needs special care, in each state (for DFA, we will see

this becomes easier in NFA, non-deterministic machine)

66

q2q0

a

a/b/c

b
q1

c

b/c a

b/c

q3

a

• Give a DFA M such that:

L(M) = {x | x is a string of a’s and b’s such that x

contains both aa and bb}

First do, for a language where ‘aa’ comes before ‘bb’

Then do its reverse; and then parallelize them.

Remember, you may have multiple “final” states, but only one “start”

state
67

q0

b

q7

q5q4 q6

b

b

b

a

q2q1 q3

a

a

a

b

a/bb

a

a

a b

• Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

For {}: For {ε}:

For Σ*: For Σ+:

68

0/1

q0

0/1

q0

q1q0

0/1

0/1

0/1
q0 q1

0/1

Nondeterministic Finite State

Automata (NFA)

• An NFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) –> 2Q :2Q is the power set of Q, the set of all subsets of Q
δ(q,s) :The set of all states p such that there is a transition

labeled s from q to p

δ(q,s) is a function from Q x S to 2Q (but not only to Q)
69

• Example #1: one or more 0’s followed by one or more 1’s

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

70

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0/1

Definitions for NFAs

• Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is

accepted by M iff δ({q0}, w) contains at least one state in F.

• Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language accepted by M

is the set:

L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F}

• Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

71

Equivalence of DFAs and NFAs

• Do DFAs and NFAs accept the same class of languages?

– Is there a language L that is accepted by a DFA, but not by any NFA?

– Is there a language L that is accepted by an NFA, but not by any DFA?

• Observation: Every DFA is an NFA, DFA is only restricted NFA.

• Therefore, if L is a regular language then there exists an NFA M such

that L = L(M).

• It follows that NFAs accept all regular languages.

• But do NFAs accept more?

72

• Consider the following DFA: 2 or more c’s

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

73

q1q0
q2

a

b

a

b

c c

a/b/c

• An Equivalent NFA:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 {q0} {q0} {q1}

q1 {q1} {q1} {q2}

q2 {q2} {q2} {q2}

74

q1q0
q2

a

b

a

b

c c

a/b/c

• Lemma 1: Let M be an DFA. Then there exists a NFA M’ such that

L(M) = L(M’).

• Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows

that L(M’) = L(M).

The above is just a formal statement of the observation from the

previous slide.

75

• Lemma 2: Let M be an NFA. Then there exists a DFA M’ such that L(M) =
L(M’).

• Proof: (sketch)

Let M = (Q, Σ, δ,q0,F).

Define a DFA M’ = (Q’, Σ, δ’,q’
0,F’) as:

Q’ = 2Q Each state in M’ corresponds to a

= {Q0, Q1,…,} subset of states from M

where Qu = [qi0, qi1,…qij]

F’ = {Qu | Qu contains at least one state in F}

q’
0 = [q0]

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv

76

• Example: empty string or start and end with 0

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1

q0

q1

77

{q1} {}

{q0, q1} {q1}

q1q0

0

0/1

0

NFAs with ε Moves

• An NFA-ε is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ U {ε} to 2Q

δ: (Q x (Σ U {ε})) –> 2Q

δ(q,s) -The set of all states p such that there is a

transition labeled a from q to p, where a

is in Σ U {ε}

• Sometimes referred to as an NFA-ε other times, simply as an NFA.
78

ε-closure

• Define ε-closure(q) to denote the set of all states reachable from q by zero or
more ε transitions.

• Examples: (for the previous NFA)

ε-closure(q0) = {q0, q1, q2} ε-closure(q2) = {q2}

ε-closure(q1) = {q1, q2} ε-closure(q3) = {q3}

• ε-closure(q) can be extended to sets of states by defining:

ε-closure(P) = ε-closure(q)

• Examples:

ε-closure({q1, q2}) = {q1, q2}

ε-closure({q0, q3}) = {q0, q1, q2, q3}
79


Pq

q0

ε
0/1

q2

1

0

q1

0

q3

ε

0

1

Hector Miguel Chavez

Western Michigan University

Chomsky Normal Form

May 27, 2009 81

A → BC
A → α

A context free grammar is said to be in Chomsky
Normal Form if all productions are in the following
form:

• A, B and C are non terminal symbols
• α is a terminal symbol

Preliminary Simplifications

May 27, 2009 82

Eliminate Useless Symbols

We need to determine if the symbol is useful by
identifying if a symbol is generating and is reachable

• X is generating if X ω for some terminal string ω.
• X is reachable if there is a derivation X αXβ

for some α and β





*

*

Preliminary Simplifications

May 27, 2009 83

Example: Removing non-generating symbols

S → AB |

a

A → b
Initial CFL grammar

S → AB |

a

A → b

Identify generating symbols

S → a

A → b
Remove non-generating

Preliminary Simplifications

May 27, 2009 84

Example: Removing non-reachable symbols

S → a Eliminate non-reachable

S → a

A → b
Identify reachable symbols

Preliminary Simplifications

May 27, 2009 85

The order is important.

S → AB |

a

A → b

Looking first for non-reachable symbols and then
for non-generating symbols can still leave some
useless symbols.

S → a

A → b

Preliminary Simplifications

May 27, 2009 86

Finding generating symbols

If there is a production A → α, and every symbol

of α is already known to be generating. Then A is

generating

S → AB |

a

A → b

We cannot use S → AB because
B has not been established to
be generating

Preliminary Simplifications

May 27, 2009 87

Finding reachable symbols

S is surely reachable. All symbols in the body of a
production with S in the head are reachable.

S → AB |

a

A → b

In this example the symbols
{S, A, B, a, b} are reachable.

Preliminary Simplifications

May 27, 2009 88

Eliminate ε Productions

• In a grammar ε productions are convenient but
not essential

• If L has a CFG, then L – {ε} has a CFG

Nullable variable

A ε*

Preliminary Simplifications

May 27, 2009 89

If A is a nullable variable

• Whenever A appears on the body of a production
A might or might not derive ε

S → ASA | aB
A → B | S
B → b | ε

Nullable: {A, B}

Preliminary Simplifications

May 27, 2009 90

• Create two version of the production, one with
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S | a

A → B | S

B → b

Eliminate ε Productions

Preliminary Simplifications

May 27, 2009 91

• Create two version of the production, one with
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S | a

A → B | S

B → b

Eliminate ε Productions

Preliminary Simplifications

May 27, 2009 92

• Create two version of the production, one with
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S | a

A → B | S

B → b

Eliminate ε Productions

Preliminary Simplifications

May 27, 2009 93

Eliminate unit productions

A unit production is one of the form A → B where both

A and B are variables

A B*

A → B, B → ω, then A → ω

Identify unit pairs

Preliminary Simplifications

May 27, 2009 94

Example:

I → a | b | Ia | Ib | I0 | I1
F → I | (E)
T → F | T * F
E → T | E + T

Pairs Productions

(E, E) E → E + T

(E, T) E → T * F

(E, F) E → (E)

(E, I) E → a | b | Ia | Ib | I0 | I1

(T, T) T → T * F

(T, F) T → (E)

(T, I) T → a | b | Ia |Ib | I0 | I1

(F, F) F → (E)

(F, I) F → a | b | Ia | Ib | I0 | I1

(I, I) I → a | b | Ia | Ib | I0 | I1

Basis: (A, A) is a unit pair
of any variable A, if
A A by 0 steps.*

T = {*, +, (,), a, b, 0, 1}

Preliminary Simplifications

May 27, 2009 95

Example:

Pairs Productions

… …

(T, T) T → T * F

(T, F) T → (E)

(T, I) T → a | b | Ia |Ib | I0 | I1

… …

I → a | b | Ia | Ib | I0 | I1

E → E + T | T * F | (E) | a | b | la | lb | l0 | l1

T → T * F | (E) | a | b | Ia | Ib | I0 | I1

F → (E) | a | b | Ia | Ib | I0 | I1

Final Simplification

May 27, 2009 96

Chomsky Normal Form (CNF)

1. Arrange that all bodies of length 2 or more to
consists only of variables.

2. Break bodies of length 3 or more into a cascade of
productions, each with a body consisting of two
variables.

Starting with a CFL grammar with the preliminary
simplifications performed

Final Simplification

May 27, 2009 97

Step 1: For every terminal α that appears in a body
of length 2 or more create a new variable that has
only one production.

E → E + T | T * F | (E) | a | b | la | lb | l0 | l1
T → T * F | (E) | a | b | Ia | Ib | I0 | I1
F → (E) | a | b | Ia | Ib | I0 | I1
I → a | b | Ia | Ib | I0 | I1 E → EPT | TMF | LER | a | b | lA | lB

| lZ | lO

T → TMF | LER | a | b | IA | IB | IZ |

IO

F → LER | a | b | IA | IB | IZ | IO

I → a | b | IA | IB | IZ | IO

A → a B → b Z → 0 O → 1

P → + M → *L → (R →)

Final Simplification

May 27, 2009 98

Step 2: Break bodies of length 3 or more adding
more variables

E → EPT | TMF | LER | a | b | lA | lB | lZ | lO

T → TMF | LER | a | b | IA | IB | IZ | IO

F → LER | a | b | IA | IB | IZ | IO

I → a | b | IA | IB | IZ | IO

A → a B → b Z → 0 O → 1

P → + M → *L → (R →)

C1 → PT
C2 → MF
C3 → ER

Greibach Normal Form

May 27, 2009 99

A → αX

A context free grammar is said to be in Greibach
Normal Form if all productions are in the following
form:

• A is a non terminal symbols
• α is a terminal symbol
• X is a sequence of non terminal symbols.

It may be empty.

Greibach Normal Form

May 27, 2009 100

Example:

S → XA | BB
B → b | SB
X → b
A → a

CNF

S = A1

X = A2

A = A3

B = A4

New

Labels

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

Updated CNF

Greibach Normal Form

May 27, 2009 101

Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

First Step

Xk is a string of zero
or more variables

Ai → AjXk j > i

A4 → A1A4

Greibach Normal Form

May 27, 2009 102

Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

A4 → A1A4

A4 → A2A3A4 | A4A4A4 | b

A4 → bA3A4 | A4A4A4 | b

First Step Ai → AjXk j > i

Greibach Normal Form

May 27, 2009 103

Example:

Second Step

Eliminate Left

Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b
A2 → b
A3 → a

A4 → A4A4A4

Greibach Normal Form

May 27, 2009 104

Example:

Second Step

Eliminate Left

Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b
A2 → b
A3 → a

A4 → bA3A4 | b | bA3A4Z | bZ

Z → A4A4 | A4A4Z

Greibach Normal Form

May 27, 2009 105

Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ

Z → A4A4 | A4A4 Z

A2 → b

A3 → a

A → αX

GNF

Greibach Normal Form

May 27, 2009 106

Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ
Z → A4A4 | A4A4 Z
A2 → b
A3 → a

Z → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

Greibach Normal Form

May 27, 2009 107

Example:

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A4 → bA3A4 | b | bA3A4Z | bZ
Z → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A2 → b
A3 → a

Grammar in Greibach Normal Form

Regular Expressions

• Notation to specify a language

– Declarative

– Sort of like a programming language.

• Fundamental in some languages like perl and applications like

grep or lex

– Capable of describing the same thing as a NFA

• The two are actually equivalent, so RE = NFA = DFA

– We can define an algebra for regular expressions

Algebra for Languages

• We use following operators in regular

expressions:

– Union

– Concatenation

– Kleene Star

Definition of a Regular Expression

• R is a regular expression if it is:

1. a for some a in the alphabet , standing for the language {a}

2. ε, standing for the language {ε}

3. Ø, standing for the empty language

4. R1+R2 where R1 and R2 are regular expressions, and + signifies
union (sometimes | is used)

5. R1R2 where R1 and R2 are regular expressions and this signifies
concatenation

6. R* where R is a regular expression and signifies closure

7. (R) where R is a regular expression, then a parenthesized R is
also a regular expression

This definition may seem circular, but 1-3 form the basis

Precedence: Parentheses have the highest precedence,

followed by *(iteration), concatenation, and then union(ICU)

RE Examples

• L(001) = {001}

• L(0+10*) = { 0, 1, 10, 100, 1000, 10000, … }

• L(0*10*) = {1, 01, 10, 010, 0010, …} i.e. {w | w has exactly a single 1}

• L()* = {w | w is a string of even length}

• L((0(0+1))*) = { ε, 00, 01, 0000, 0001, 0100, 0101, …}

• L((0+ε)(1+ ε)) = {ε, 0, 1, 01}

• L(1Ø) = Ø ; concatenating the empty set to any set yields the empty set.

• Rε = R

• R+Ø = R

• Note that R+ε may or may not equal R (we are adding ε to the language)

• Note that RØ will only equal R if R itself is the empty set.

Regular Expressions

• Regular expressions

• describe regular languages

• Example:

• describes the language

Fall 2006 Costas Busch - RPI 112

*)(cba +

   ,...,,,,,*, bcaabcaabcabca =

Equivalence of FA and RE

• Finite Automata and Regular Expressions

are equivalent. To show this:

– Show we can express a DFA as an equivalent

RE

– Show we can express a RE as an ε-NFA. Since

the ε-NFA can be converted to a DFA and the

DFA to an NFA, then RE will be equivalent to

all the automata we have described.

Turning a DFA into a RE

• Theorem: If L=L(A) for some DFA A, then there

is a regular expression R such that L=L(R).

• Proof

– Construct GNFA, Generalized NFA

• We’ll skip this in class, but see the textbook for details

– State Elimination

• We’ll see how to do this next, easier than inductive

construction, there is no exponential number of expressions

DFA to RE: State Elimination

• Eliminates states of the automaton and

replaces the edges with regular expressions

that includes the behavior of the eliminated

states.

• Eventually we get down to the situation

with just a start and final node, and this is

easy to express as a RE

Converting a RE to an Automata

• We have shown we can convert an automata to a

RE. To show equivalence we must also go the

other direction, convert a RE to an automaton.

• We can do this easiest by converting a RE to an ε-

NFA

– Inductive construction

– Start with a simple basis, use that to build more

complex parts of the NFA

RE to ε-NFA

• Basis:

R=a

R=ε

a

ε

R=Ø

Next slide: More complex RE’s

R=S+T

S

T

ε

ε

ε

ε

R=ST S T
ε

R=S*
S

ε

ε

ε

ε

Let P be the number of states in M

Assume w  L is such that |w| ≥ P

q0 qi qj q|w|

…

There must be j > i such that qi = qj

Let M be a DFA that recognizes L

1. |y| > 0

2. |xy| ≤ P

3. xyiz  L for any i ≥ 0

We show w = xyz

x

USING THE PUMPING LEMMA

Use the pumping lemma to prove that

B = {0n1n | n ≥ 0} is not regular

Hint: Assume B is regular

Let B = L(M), for DFA M,

and let P be larger than the

number of states in M

Try pumping s = 0P1P

Use the pumping lemma to prove that

C = { w | w has an equal number of 0s and 1s}

is not regular

Hint: Try pumping s = 0P1P

If C is regular, s can be split into s = xyz, where for

any i ≥ 0, xyiz is also in C

and |xy| ≤ P

Formal Definition of a PDA

• A pushdown automaton (PDA) is a seven-tuple:

M = (Q, Σ, Г, δ, q0, z0, F)

Q A finite set of states

Σ A finite input alphabet

Г A finite stack alphabet

q0 The initial/starting state, q0 is in Q

z0 A starting stack symbol, is in Г // need not always remain at the bottom of stack

F A set of final/accepting states, which is a subset of Q

δ A transition function, where

δ: Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*

123

Pushdown Automaton
• A pushdown automaton (PDA) is an abstract model machine similar to the FSA

• It has a finite set of states. However, in addition, it has a pushdown stack. Moves of

the PDA are as follows:

• 1. An input symbol is read and the top symbol on the stack is read.

• 2. Based on both inputs, the machine enters a new state and writes zero or more

symbols onto the pushdown stack.

• 3. Acceptance of a string occurs if the stack is ever empty. (Alternatively,

acceptance can be if the PDA is in a final state. Both models can be shown to be

equivalent.)

124

Power of PDAs

• PDAs are more powerful than FSAs.

• anbn, which cannot be recognized by an FSA, can easily be recognized by

the PDA.

• Stack all a symbols and, for each b, pop an a off the stack.

• If the end of input is reached at the same time that the stack becomes

empty, the string is accepted.

• It is less clear that the languages accepted by

• PDAs are equivalent to the context-free languages.

125

PDAs to produce derivation strings

• Given some BNF (context free grammar). Produce the leftmost derivation of a

string using a PDA:

• 1. If the top of the stack is a terminal symbol, compare it to the next input

symbol; pop it off the stack if the same. It is an error if the symbols do not

match.

• 2. If the top of the stack is a nonterminal symbol X, replace X on the stack

with some string , where  is the right hand side of some production X→ .

• This PDA now simulates the leftmost derivation for some context-free

grammar.

• This construction actually develops a nondeterministic PDA that is equivalent

to the corresponding BNF grammar. (i.e., step 2 may have multiple options.)

126

NDPDAs are different from DPDAs

• What is the relationship between deterministic

• PDAs and nondeterministic PDAs? They are different.

• Consider the set of palindromes, strings reading the same forward and backward,

generated by the grammar

• S → 0S0 | 1S1 | 2

• We can recognize such strings by a deterministic PDA:

– 1. Stack all 0s and 1s as read.

– 2. Enter a new state upon reading a 2.

– 3. Compare each new input to the top of stack, and pop stack.

• However, consider the following set of palindromes:

• S → 0S0 | 1S1 | 0 | 1

• In this case, we never know where the middle of the string is. To recognize these

palindromes, the automaton must guess where the middle of the string is (i.e., is

nondeterministic).

127

stack

stack head

finite

control

tape head

tape

The tape is divided into finitely many cells.

Each cell contains a symbol in an alphabet Σ.

a l p h a b e t

The stack head always scans the top

symbol of the stack. It performs two

basic operations:

Push: add a new symbol at the top.

Pop: read and remove the top symbol.

Alphabet of stack symbols: Γ

• The head scans at a cell on the tape and can

read a symbol on the cell. In each move, the

head can move to the right cell.

a

• The finite control has finitely many states

which form a set Q. For each move, the state is

changed according to the evaluation of a

transition function

δ : Q x (Σ U {ε}) x (Γ U {ε}) → 2 .
Q x (Γ U {ε})

• (p, u) δ(q, ε, v) means that this a ε-move.

pq

a

v u

a

• (p, u) δ(q, a, ε) means that a push operation

performs at stack.



pq

a a

u

Example 1. Construct PDA to accept

L= {0 1 | n > 0}
n n

Solution 1.

0, ε/0

1, 0/ε

1, 0/ε

Theorem Every CFL can be accepted by a PDA.

Proof. Consider a CFL L = L(G) for a CFG

G = (V, Σ, R, S).

ε, ε/S

a, a/ε for a in Σ

ε, A/xn

A → x1 x2 …xn in R

ε, ε/x1

PDA. aby accepted becan it CFL is languageA L

Theorem

Graphical Notation for PDA of

Lwwr

q0 q1
q2

q3

start

(ε, t0) / t0

(ε, 0) / 0

(ε, 1) / 1

(0,0)/ε

(1,1)/ε

(ε,t0) / t0

(EOF,t0) / t0
All possibilities that do not have explicit

edges, have implicit edges that go to an

implicit reject state.

• This is a nondeterministic machine.

• Think of the machine as following all possible

paths.

• Kill a path if it leads to a reject state.

• If any path leads to an accept state, then the machine

(0, 0)/00

(0, 1)/01

(1, 0)/10

(1, 1)/11
(0, t0)/0t0

(1, t0)/1t0

• TMs model the computing capability of a general purpose computer, which
informally can be described as:

– Effective procedure

• Finitely describable

• Well defined, discrete, “mechanical” steps

• Always terminates

– Computable function

• A function computable by an effective procedure

• TMs formalize the above notion.

• Church-Turing Thesis: There is an effective procedure for solving a problem
if and only if there is a TM that halts for all inputs and solves the problem.

– There are many other computing models, but all are equivalent to or subsumed by
TMs. There is no more powerful machine (Technically cannot be proved).

• DFAs and PDAs do not model all effective procedures or computable
functions, but only a subset.

138

Deterministic Turing Machine (DTM)

…….. ……..

• Two-way, infinite tape, broken into cells, each containing one symbol.

• Two-way, read/write tape head.

• An input string is placed on the tape, padded to the left and right infinitely with

blanks, read/write head is positioned at the left end of input string.

• Finite control, i.e., a program, containing the position of the read head, current

symbol being scanned, and the current state.

• In one move, depending on the current state and the current symbol being

scanned, the TM 1) changes state, 2) prints a symbol over the cell being

scanned, and 3) moves its’ tape head one cell left or right.

• Many modifications possible, but Church-Turing declares equivalence of all. 139

Finite

Control

B B 0 1 1 0 0 B B

Formal Definition of a DTM

• A DTM is a seven-tuple:

M = (Q, Σ, Γ, δ, q0, B, F)

Q A finite set of states

Σ A finite input alphabet, which is a subset of Γ– {B}

Γ A finite tape alphabet, which is a strict superset of Σ

B A distinguished blank symbol, which is in Γ

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A next-move function, which is a mapping (i.e., may be undefined) from

Q x Γ –> Q x Γ x {L,R}

Intuitively, δ(q,s) specifies the next state, symbol to be written, and the direction of tape

head movement by M after reading symbol s while in state q.

140

• Example #1: {w | w is in {0,1}* and w ends with a 0}

0

00

10

10110

Not ε

Q = {q0, q1, q2}

Γ = {0, 1, B}

Σ = {0, 1}

F = {q2}

δ:

0 1 B

->q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -

q2
* - - -

– q0 is the start state and the “scan right” state, until hits B

– q1 is the verify 0 state

– q2 is the final state 141

• Same Example #2: {0n1n | n ≥ 1}

0 1 X Y B

q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

q3 - - - (q3, Y, R) (q4, B, R)

q4 - - - - -

Logic: cross 0’s with X’s, scan right to look for corresponding 1, on finding it cross it with Y, and

scan left to find next leftmost 0, keep iterating until no more 0’s, then scan right looking for B.

– The TM matches up 0’s and 1’s

– q1 is the “scan right” state, looking for 1

– q2 is the “scan left” state, looking for X

– q3 is “scan right”, looking for B

– q4 is the final state

Can you extend the machine to include n=0?

How does the input-tape look like for string epsilon?

• Other Examples:

000111 00

11 001

011

142

Formal Definitions for DTMs

• Let M = (Q, Σ, Г, δ, q0, B, F) be a TM.

• Definition: An instantaneous description (ID) is a triple α1qα2, where:

– q, the current state, is in Q

– α1α2, is in Г*, and is the current tape contents up to the rightmost non-blank symbol, or the

symbol to the left of the tape head, whichever is rightmost

– The tape head is currently scanning the first symbol of α2

– At the start of a computation α1= ε

– If α2= ε then a blank is being scanned

• Example: (for TM #1)

q00011 Xq1011 X0q111 Xq20Y1 q2X0Y1

Xq00Y1 XXq1Y1 XXYq11 XXq2YY Xq2XYY

XXq0YY XXYq3Y XXYYq3 XXYYBq4 143

• Suppose the following is the current ID of a DTM

x1x2…xi-1qxixi+1…xn

Case 1) δ(q, xi) = (p, y, L)

(a) if i = 1 then qx1x2…xi-1xixi+1…xn |— pByx2…xi-1xixi+1…xn

(b) else x1x2…xi-1qxixi+1…xn |— x1x2…xi-2pxi-1yxi+1…xn

– If any suffix of xi-1yxi+1…xn is blank then it is deleted.

Case 2) δ(q, xi) = (p, y, R)

x1x2…xi-1qxixi+1…xn |— x1x2…xi-1ypxi+1…xn

– If i>n then the ID increases in length by 1 symbol

x1x2…xnq |— x1x2…xnyp

144

• Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is
accepted by M iff

q0w |—* α1pα2

where p is in F and α1 and α2 are in Г*

• Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M,
denoted L(M), is the set

{w | w is in Σ* and w is accepted by M}

• Notes:

– In contrast to FA and PDAs, if a TM simply passes through a final state then the
string is accepted.

– Given the above definition, no final state of a TM need to have any transitions.
Henceforth, this is our assumption.

– If x is NOT in L(M) then M may enter an infinite loop, or halt in a non-final
state.

– Some TMs halt on ALL inputs, while others may not. In either case the language
defined by TM is still well defined.

145

• Definition: Let L be a language. Then L is recursively enumerable if there exists a TM
M such that L = L(M).

– If L is r.e. then L = L(M) for some TM M, and

• If x is in L then M halts in a final (accepting) state.

• If x is not in L then M may halt in a non-final (non-accepting) state or no transition is available, or loop
forever.

• Definition: Let L be a language. Then L is recursive if there exists a TM M such that L
= L(M) and M halts on all inputs.

– If L is recursive then L = L(M) for some TM M, and

• If x is in L then M halts in a final (accepting) state.

• If x is not in L then M halts in a non-final (non-accepting) state or no transition is available (does not
go to infinite loop).

Notes:

– The set of all recursive languages is a subset of the set of all recursively enumerable
languages

– Terminology is easy to confuse: A TM is not recursive or recursively enumerable, rather a
language is recursive or recursively enumerable.

146

147

L is Recursively enumerable:

TM exist: M0, M1, …

They accept string in L, and do not accept any string outside L

L is Recursive:

at least one TM halts on L and on ∑*-L, others may or may not

L is Recursively enumerable but not Recursive:

TM exist: M0, M1, …

but none halts on all x in ∑*-L

M0 goes on infinite loop on a string p in ∑*-L, while M1 on q in ∑*-L

However, each correct TM accepts each string in L, and none in ∑*-L

L is not R.E:

no TM exists

Modifications of the Basic TM Model

• Other (Extended) TM Models:

– One-way infinite tapes

– Multiple tapes and tape heads

– Non-Deterministic TMs

– Multi-Dimensional TMs (n-dimensional tape)

– Multi-Heads

– Multiple tracks

All of these extensions are equivalent to the basic DTM model

148

References

• cs.www.umd.edu › users › mvz › cmsc330-f06

• www.iitg.ac.in › gkd › oct › oct11 ›

• nptel.ac.in › content › storage2 › courses › module3

• www.geeksforgeeks.org

• cs.www3.stonybrook.edu › ~cse350 › slides › cfg3

• www.slideshare.net › rajendranjrf › chomsky-greibach-normal-forms

• cse.www.iitd.ernet.in › ~naveen › courses › COL352 › slides

• cs.www.rpi.edu › ~moorthy › Courses › modcomp › slides › NFA

• cs.people.nctu.edu.tw › ~lwhsu › course › slides

• cs.www.rpi.edu › ~moorthy › Courses >modcomp>slides>PDA

• cs.people.nctu.edu.tw › ~lwhsu › course › slides

• cs.www.unm.edu › ~joel › Pushdown Automaton

149

