Multi-Layer Perceptron (MLP)

1st question:

what do the extra layers gain you? Start with looking at
what a single layer can’t do

Single layer generates a linear
decision boundary

0o O

\
o\ LI
\

+1

\

(19_1)
(1,1)

(_19_1)

(-1,1

Non linearly separable problems

Types of Exclusive-OR | Classes with | Most General
Structure . : :)
Decision Regions Problem
Single-Layer Half Plane (A)
@, Bounded By
/ \ Hyperplane
Two-Layer Convex Open Q
O\ Or
é@ Closed Regions ‘

Three-Layer Abitrary

A
POy (Complexity E

Limited by No.
% of Nodes) ‘ a

@

Neural Networks — An Introduction Dr. Andrew Hunter

Three-layer networks

* No connections within a layer

* No connections within a layer
* No direct connections between input and output layers

* No connections within a layer
* No direct connections between input and output layers
* Fully connected between layers

* No connections within a layer

* No direct connections between input and output layers

* Fully connected between layers

» Often more than 3 layers

« Number of output units need not equal number of input units
« Number of hidden units per layer can be more or less than

Input or output units

Often include bias as an extra weight

What do each of the layers do?
Q\ Q\ Q\
c{ ® %
3rd layer can generate

1st layer draws 2nd layer combines arbitrarily complex
linear boundaries the boundaries boundaries

Continued...

» Can also view 2nd layer as using local knowledge while 3rd layer
does global

»With sigmoid activation functions can show that a 3 layer net can
approximate any function to arbitrary accuracy: property of
Universal Approximation

» Proof by thinking of superposition of sigmoid

» Not practically useful as need arbitrarily large number of units but
more of an existence proof

» For a 2 layer net, same is true for a 2 layer net providing function is
continuous and from one finite dimensional space to another

In the perceptron/single layer nets, we used gradient descent on the

error function to find the correct weights: X
AW, = : 's (- vy)
w;i = (5 - Y) X B :

We see that errors/updates are local to the node ie the change in the
weight from node 1 to output j (wj;) Is controlled by the input that
travels along the connection and the error signal from output |

«But with more layers how are the weights for the first 2 layers
found when the error is computed for layer 3 only?

Backpropagation learning algorithm ‘BP’
Solution to credit assignment problem in MLP

Rumelhart, Hinton and Williams (1986)

Forward pass phase:
computes ‘functional signal’, feed-forward propagation of input pattern
signals through network

Forward pass phase: computes ‘functional signal’, feed-forward
propagation of input pattern signals through network

the error backwards through network starting at output units (where
the error Is the difference between actual and desired output values)

Two-layer networks

We will concentrate on two-layer, but could easily
generalize to more layers

zi(t) =9(2; v;(H)x () attimet
=g (u(t))

yi) =9(2; w({®)z () attimet
=9 (a(t))

a/u known as activation, g the activation function

biases set as extra weights

1. Compute values for hidden units
U; () = Zvji (t)x; ()
z; = g(u; (1))
2. compute values for output units
a, (1) = Zwkj (t)z,
J

Y = 0O (ak (t))

Use gradient descent

AE (1)
évvij (D)

w;; (t+1) —w; (t) oc

both for hidden units and output units

Term B first;

aJi (t) _ Xj (t) ﬁai (t) _ Zj (t)
a/ij (t) aNij (t)
_ &) _ &)
0; (1) = EGR A;(t) = 2o (D

(error terms). Can evaluate these by chain rule:

For output units we therefore have:

For hidden units must use the chain rule:

v; (t+1) —v; (t) = no; (1) X, ()
w;; (t+1) —w; () = A, (1) Z, (t)

Wi; (t+1)— Wi; (t) = nA, (t)zj (t)
=n7(d; (1) —y; (1)g'(a (1)) z; (t)

Vii (t+1) — Vij (t) = 775, (t)xj (D)
= 779" (u; (t)) X; (t)ZAk (O w,

O Vy=1 O

Use identity activation function (ie g(a) = a)

All biases set to 1. Will not draw them for clarity.

Learning rate n = 0.1

Have input [0 1] with target [1 O].

X1
Xy

X1
Xy

X1
Xy

Note that the weights multiplied by the zero input are
unchanged as they do not contribute to the error

We have also changed biases (not shown)

X,= 0 v =-1 W= 0.9 y, = 1.66
O 11
Xp=1 2D .
0 Wy,=06 —
y, =0.32

Outputs now closer to target value [1, 0]

1.5

1 saturated
0.5 -
input signal
|:| -
saturated
_|:|5 1 1 1 1 1 1
-10 a -A 2 4 5 a 10

025 r .

02F .

015 - .

01 .

Summary of (sequential) BP learning algorithm

d

present input pattern to input units
compute functional signal for hidden units

compute functional signal for output units

Sequential mode

 Less storage for each weighted connection

« Random order of presentation and updating per pattern means
search of weight space Is stochastic--reducing risk of local

minima

 Able to take advantage of any redundancy In training set (i.e..
same pattern occurs more than once In training set, esp. for large
difficult training sets)

« Simpler to implement

Dynamics of BP learning

2> (@, -0,®)

valleys

Selecting initial weight values

12

10

with regularization

Wi (n + 1) — W, (n) — 775] (n)yi (n)
+ a[Wij (n) - Wij (n - 1)]

o IS momentum constant and controls how much notice is taken of
recent history

Effect of momentum term

« I weight changes tend to have same sign
momentum terms increases and gradient decrease
speed up convergence on shallow gradient
« |If weight changes tend have opposing signs
momentum term decreases and gradient descent slows to
reduce oscillations (stablizes)
 Can help escape being trapped in local minima

However, aim Is for new patterns to be
classified correctly

error Training error

............... Generalisation
error

v

Training time

Typically, though error on training set will decrease as training
continues generalisation error (error on unseen data) hitts a
minimum then increases (cf model complexity etc)

Therefore want more complex stopping criterion

Evaluation of generalisation error ie network performance

Universal Function Approximation

Universal Approximation Theorem

The backpropagation
algorithm

Learning in multi-layered networks

* Networks with one or more hidden layers are necessary to represent complex
mappings

* In such a network the basic delta learning law is insufficient
* It only defines how to update weights in output units (uses T-O)

* To update hidden node weights, we have to define their error
* This is achieved by the Backpropagation algorithm

The Backpropagation process

* Inputs are fed through the network in the usual way
* this is the forward pass

* Output layer weights are adjusted based on errors...
... then weights in the previous layer are adjusted ...

... and so on back to the first layer
* this is the backwards pass (or backpropagation)

* Errors determined in a layer are used to determine those in the previous layer

Illustrating the error contribution

* A hidden node is partially ‘credited’ for errors in the next layer
* these errors are created in the forward pass

‘ error 1
W
! ‘ error 2

 " error 3

‘ error K

error_contribution = w, *error I + ... + w, *error Kk

W

The backpropagation algorithm

* A backpropagation network is
* a multi-layered feed-forward network
* using the sigmoid response activation function

* Backpropagation algorithm
1. Initialise all network weights to small random numbers (between -0.05 and 0.05)
2. beginiteration

for each training example do:
propagate input to output layer;
from output layer, back propagate errors;
update weights

end epoch
3. If termination condition is met, stop else goto 2

Termination conditions

* Many thousands of iterations (epochs or cycles) may be necessary to learn a
classification mapping

* The more complex the mapping to be learnt, the more cycles will be required

* Several termination conditions are used:
* stop after a given number of cycles

» stop when the error on the training examples (or on a separate validation set) falls
below some agreed level

 Stopping too soon results in underfitting, too late in overfitting

Backpropagation as a search

 Learning is a search for a network weight vector to implement the required
mapping

* The search is hill-climbing or rather descending called steepest gradient
descent

* The heuristic used is the total of (T-O)? over all examples fed in a single cycle
* the weight update produces the greatest fall in overall error for the size of step

* As with all hill-climbing there is the danger of sticking in local minima

Problems with the search

* The size of step is controlled by the learning rate parameter
* This must be tuned for individual problems
* If the step is too large search becomes inefficient

* The error surface tends to have
* extensive flat areas
* troughs with very little slope

* It can be difficult to reduce error in such regions

* Weights have to move large distances and it can be hard to determine the right
direction

* High numerical accuracy is required, e.g. 32-bit floating point
* On the bright side there tend to be many global minima and few local minima

The trained network

 After learning, Backpropagation may be used as a classifier:

* Descriptions of new examples are fed into the network and the class is read
from the output layer

* For 1-out-of-N output representations, exact values of 0 and 1 will not
usually be obtained

* Sensitivity analysis (using test data) determines which attributes are
most important for classification

* An attribute is regarded as important if small changes in its value affect the
classification

