
Multi-Layer Perceptron (MLP)



Today we will introduce the MLP and the 

backpropagation algorithm which is used to train it

MLP used to describe any general feedforward (no 

recurrent connections) network 

However, we will concentrate on nets with units 

arranged in layers 
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1st question:

what do the extra layers gain you? Start with looking at 

what a single layer can’t do
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XOR 

problem

XOR (exclusive OR) problem

0+0=0

1+1=2=0  mod 2

1+0=1

0+1=1

Perceptron does not work here 

Single layer generates a linear  

decision boundary



Minsky & Papert (1969) offered solution to XOR problem by 

combining perceptron unit responses using a second layer of 

units
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(-1,1)

(1,-1)

(-1,-1)

(1,1)

This is a linearly separable problem!
Since for 4 points { (-1,1), (-1,-1), (1,1),(1,-1) } it is always 

linearly separable if we want to have three points in a class



Structure
Types of

Decision Regions

Exclusive-OR

Problem

Classes with

Meshed regions

Most General

Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane

Bounded By

Hyperplane

Convex Open

Or

Closed Regions

Abitrary

(Complexity

Limited by No.

of Nodes)

A

AB

B

A

AB

B
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AB

B

B
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B
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B
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Non linearly separable problems

Neural Networks – An Introduction Dr. Andrew Hunter



xn

x1

x2

Input
Output

Three-layer networks

Hidden layers



Properties of architecture

• No connections within a layer 
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Properties of architecture

• No connections within a layer

• No direct connections between input and output layers

•
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Properties of architecture

• No connections within a layer

• No direct connections between input and output layers

• Fully connected between layers

•
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Properties of architecture

• No connections within a layer

• No direct connections between input and output layers

• Fully connected between layers

• Often more than 3 layers

• Number of output units need not equal number of input units

• Number of hidden units per layer can be more or less than 

input or output units
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Each unit is a perceptron

Often include bias as an extra weight



What do each of the layers do?

1st layer draws 

linear boundaries
2nd layer combines 

the boundaries

3rd layer can generate 

arbitrarily complex 

boundaries



 Can also view 2nd layer as using local knowledge while 3rd layer   

does global

With sigmoid activation functions can show that a 3 layer net can 

approximate any function to arbitrary accuracy: property of 

Universal Approximation

 Proof by thinking of superposition of sigmoid

 Not practically useful as need arbitrarily large number of units but 

more of an existence proof

 For a 2 layer net, same is true for a 2 layer net providing function is 

continuous and from one finite dimensional space to another 

Continued…
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In the perceptron/single layer nets, we used gradient descent on the 

error function to find the correct weights:

D wji = (tj - yj) xi

We see that errors/updates are local to the node ie the change in the 

weight from node i to output j (wji) is controlled by the input that 

travels along the connection and the error signal from output j

x1

x2

•But with more layers how are the weights for the first 2 layers 

found when the error is computed for layer 3 only? 

•There is no direct error signal for the first layers!!!!!

?

x1
(tj - yj)



Credit assignment problem

• Problem of assigning ‘credit’ or ‘blame’ to individual elements 

involved in forming overall response of a learning system

(hidden units)

• In neural networks, problem relates to deciding which weights 

should be altered, by how much and in which direction.

Analogous to deciding how much a weight in the early layer 

contributes to the output and thus the error

We therefore want to find out how weight wij affects the error ie we 

want: 
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Backpropagation learning algorithm ‘BP’

Solution to credit assignment problem in MLP 

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: 
computes ‘functional signal’, feed-forward propagation of input pattern 

signals through network



Back Propagation learning algorithm ‘BP’

BP has two phases:

Forward pass phase: computes ‘functional signal’, feed-forward 

propagation of input pattern signals through network

Backward pass phase:  computes ‘error signal’, propagates

the error backwards through network starting at output units (where 

the error is the difference between actual and desired output values) 



xn

x1

x2

Inputs xi

Outputs yj

Two-layer networks

y1

ym

2nd layer weights wij 

from j to i
1st layer weights vij 

from j to i

Outputs of 1st layer zi



We will concentrate on two-layer, but could easily 

generalize to  more layers 

zi (t) = g( S j vij (t) xj (t) ) at time t 

= g (  ui (t) )

yi (t) = g( S j wij (t) zj (t) ) at time t 

= g (  ai (t) )

a/u known as activation, g the activation function

biases set as extra weights 



Forward pass

Weights are fixed during forward and backward 

pass  at time t

1. Compute values for hidden units

2. compute values for output units 
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Backward Pass
Will use a sum of squares error measure.  For each training pattern 

we have:

where dk is the target value for dimension k. We want to know how to 

modify weights in order to decrease E. Use gradient descent ie 

both for hidden units and output units
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How error for pattern  changes as function of change 

in network  input to unit j

How net input to unit j changes as a function of 

change in weight w 

both for hidden units and output units

Term A

Term B

The partial derivative can be rewritten as product of two terms using 

chain rule for partial differentiation



Term A    Let
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For output units we therefore have:
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For hidden units must use the chain rule:



Backward Pass

Weights here can be viewed as providing 

degree of ‘credit’ or ‘blame’ to hidden units

Dj
Dk

i

wki wji

i = g’(ai) Sj wji Dj



Combining A+B gives 

So to achieve gradient descent in E should change weights by

vij(t+1)-vij(t) =  h  i (t) xj (n)

wij(t+1)-wij(t) = h D i (t) zj (t)

Where h is the learning rate parameter (0 < h <=1)
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Summary

Weight updates are local 

output unit

hidden unit
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Algorithm (sequential)

1. Apply an input vector and calculate all activations, a and u

2. Evaluate Dk for all output units via:

3. Backpropagate  Dk(s) to get error terms  for hidden layers using:

4. Evaluate changes using:
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Once weight changes are computed for all units, weights are updated 

at the same time (bias included as weights here). An example:

y1

y2

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

v10= 1

v20= 1

w11= 1

w21= -1

w12= 0

w22= 1

Use identity activation function (ie g(a) = a)



All biases set to 1. Will not draw them for clarity. 

Learning rate h = 0.1

y1

y2

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

w11= 1

w21= -1

w12= 0

w22= 1

Have input [0 1] with target [1 0]. 

x1= 0

x2= 1



Forward pass. Calculate 1st layer activations:

y1

y2

v11= -1

v21= 0

v12= 0

v22= 1

w11= 1

w21= -1

w12= 0

w22= 1

u2 = 2

u1 = 1

u1 = -1x0 + 0x1 +1 = 1

u2 = 0x0 + 1x1 +1 = 2

x1

x2



Calculate first layer outputs by passing activations thru activation 

functions

y1

y2

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

w11= 1

w21= -1

w12= 0

w22= 1

z2 = 2

z1 = 1

z1 = g(u1) = 1

z2 = g(u2)  = 2



Calculate 2nd layer outputs (weighted sum thru activation functions):

y1= 2

y2= 2

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

w11= 1

w21= -1

w12= 0

w22= 1

y1 = a1 = 1x1 + 0x2 +1 = 2

y2 = a2 = -1x1 + 1x2 +1 = 2



Backward pass:

D1= -1

D2= -2

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

w11= 1

w21= -1

w12= 0

w22= 1
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Target =[1, 0] so d1 = 1 and d2 = 0

So:

D1 = (d1 - y1 )= 1 – 2 = -1

D2 = (d2 - y2 )= 0 – 2 = -2



Calculate weight changes for 1st layer (cf perceptron learning):

D1 z1 =-1x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

w11= 1

w21= -1

w12= 0

w22= 1
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z2 = 2

z1 = 1

D1 z2 =-2

D2 z1 =-2

D2 z2 =-4



Weight changes will be:

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

w11= 0.9

w21= -1.2

w12= -0.2

w22= 0.6
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But first must calculate ’s:

D1= -1

D2= -2

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

D1 w11= -1

D2 w21= 2

D1 w12= 0

D2 w22= -2
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D’s propagate back:

D1= -1

D2= -2

x1

x2

v11= -1

v21= 0

v12= 0

v22= 1

1= 1

2 = -2

1 = - 1 + 2 = 1

2 = 0 – 2 = -2
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And are multiplied by inputs:

D1= -1

D2= -2

v11= -1

v21= 0

v12= 0

v22= 1

1 x1 = 0

2 x2 = -2

)()()()1( txttvtv jiijij h-

x2= 1

x1= 0

2 x1 = 0

1 x2 = 1



Finally change weights:

v11= -1

v21= 0

v12= 0.1

v22= 0.8
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x2= 1

x1= 0 w11= 0.9

w21= -1.2

w12= -0.2

w22= 0.6

Note that the weights multiplied by the zero input are 

unchanged as they do not contribute to the error

We have also changed biases (not shown)



Now go forward again (would normally use a new input vector):

v11= -1

v21= 0

v12= 0.1

v22= 0.8
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x2= 1

x1= 0 w11= 0.9

w21= -1.2

w12= -0.2

w22= 0.6

z2 = 1.6

z1 = 1.2



Now go forward again (would normally use a new input vector):

v11= -1

v21= 0

v12= 0.1

v22= 0.8
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x2= 1

x1= 0 w11= 0.9

w21= -1.2

w12= -0.2

w22= 0.6
y2 = 0.32

y1 = 1.66

Outputs now closer to target value [1, 0]



Activation Functions
How does the activation function affect the changes?
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- we need to compute the derivative of activation function g

- to find derivative the activation function  must be smooth 

(differentiable)

Where:
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Sigmoidal (logistic) function-common in  MLP

Note: when net  = 0,  f = 0.5
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where k is a positive 

constant. The sigmoidal 

function gives a value in 

range of 0 to 1. 

Alternatively can use 

tanh(ka) which is same 

shape but in range –1 to 1.

Input-output function of a 

neuron (rate coding 

assumption)



Derivative of sigmoidal function is
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Derivative of sigmoidal function has max at a = 0., is symmetric about 

this point falling to zero as sigmoid approaches extreme values



Since degree of weight change is proportional to derivative of 

activation function, 

weight changes will be greatest when units 

receives mid-range functional signal and 0 (or very small)  

extremes. This means that by saturating a neuron (making the 

activation large) the weight can be forced to be static. Can be a 

very useful property
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Summary of (sequential) BP learning algorithm

Set learning rate 

Set initial weight values (incl. biases):  w, v

Loop until stopping criteria satisfied:

present input pattern to input units

compute functional signal for hidden units

compute functional signal for output units

present Target response to output units

computer error signal for output units

compute error signal for hidden units

update all weights at same time

increment n  to n+1 and select next input and target

end loop



Network training:

Training set shown repeatedly until stopping criteria are met

Each full presentation of all patterns = ‘epoch’

Usual to randomize order of training patterns presented for each 

epoch in order to avoid correlation between consecutive training 

pairs being learnt (order effects)

Two types of network training:

• Sequential mode (on-line, stochastic, or per-pattern)

Weights updated after each pattern is presented 

• Batch mode (off-line or per -epoch). Calculate the 

derivatives/wieght changes for each pattern in the training set. 

Calculate total change by summing imdividual changes



Advantages and disadvantages of different modes

Sequential mode

• Less storage for each weighted connection

• Random order of presentation and updating per pattern means 

search of weight space is stochastic--reducing risk of local 

minima

• Able to take advantage of any redundancy in training set (i.e.. 

same pattern occurs more than once in training set, esp. for large 

difficult training sets)

• Simpler to implement

Batch mode: 

• Faster learning than sequential mode

• Easier from theoretical viewpoint

• Easier to parallelise



Dynamics of BP learning

Aim is to minimise an error function over all training 

patterns by adapting 

weights in MLP

Recall, mean squared error is typically used 

E(t)=

idea is to reduce E

in single layer network with linear activation functions, the 

error function is simple, described by a smooth parabolic surface 

with a single minimum 
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But MLP with nonlinear activation functions have complex error 

surfaces (e.g. plateaus, long valleys etc. ) with no single minimum

valleys



Selecting initial weight values

• Choice of initial weight values is important as this decides starting 

position in weight space. That is, how far away from global minimum

• Aim is to select weight values which produce midrange function 

signals 

• Select weight values randomly form uniform probability distribution

• Normalise weight values so number of weighted connections per unit

produces midrange function signal



Regularization – a way of reducing variance (taking less 

notice of data)

Smooth mappings (or others such as correlations) obtained by 

introducing penalty term into  standard error function 

E(F)=Es(F)+l ER(F)

where l is regularization coefficient

penalty term:  require that the solution should be smooth, 

etc.  Eg
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with regularization

without regularization



Momentum

Method of reducing problems of instability while increasing the rate 

of convergence

Adding term to weight update equation term effectively 

exponentially holds weight history of previous weights changed

Modified weight update equation  is 
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 is momentum constant and controls how much notice is taken of 

recent history

Effect of momentum term

• If weight changes tend to have same sign

momentum terms increases and gradient decrease

speed up convergence on shallow gradient

• If weight changes tend  have opposing signs

momentum term decreases and gradient descent slows to 

reduce oscillations (stablizes) 

• Can help escape being trapped in local minima



Stopping criteria

Can assess train performance using 

where p=number of training patterns, 

M=number of output units

Could stop training when rate of change of E is small, suggesting 

convergence

However, aim is for new patterns to be 

classified correctly
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Typically, though error on training set will decrease as training 

continues generalisation error (error on unseen data) hitts a 

minimum then increases (cf model complexity etc)

Therefore want more complex stopping criterion 

error

Training time

Training error

Generalisation 

error



Cross-validation

Method for evaluating generalisation performance of  networks 

in order to determine which is best using of available data

Hold-out method 

Simplest method when data is not scare

Divide available data into sets 

• Training data set 

-used to obtain weight and bias values during network training

• Validation data

-used  to periodically test ability of network to generalize 

-> suggest  ‘best’ network based on smallest error

• Test data set

Evaluation of generalisation error ie network performance

Early stopping of learning to minimize the training error and 

validation error



Universal Function Approximation

How good is an MLP?  How general is an MLP?

Universal Approximation Theorem

For any given constant e  and continuous function h (x1,...,xm),  
there  exists a three layer MLP with the property that 

| h (x1,...,xm) - H(x1,...,xm) |< e 

where H ( x1 , ... , xm )= S k 
i=1  ai f ( S m

j=1 wijxj + bi )



The backpropagation 
algorithm



Learning in multi-layered networks

• Networks with one or more hidden layers are necessary to represent complex 
mappings

• In such a network the basic delta learning law is insufficient
• It only defines how to update weights in output units (uses T-O)

• To update hidden node weights, we have to define their error

• This is achieved by the Backpropagation algorithm 



The Backpropagation process

• Inputs are fed through the network in the usual way
• this is the forward pass

• Output layer weights are adjusted based on errors...

… then weights in the previous layer are adjusted  …

… and so on back to the first layer
• this is the backwards pass (or backpropagation)

• Errors determined in a layer are used to determine those in the previous layer



Illustrating the error contribution

• A hidden node is partially ‘credited’ for errors in the next layer
• these errors are created in the forward pass 

error 1

error 2

error 3

error k

w1

wk

error_contribution = w1 * error 1 + … + wk * error k

O



The backpropagation algorithm

•A backpropagation network is
• a multi-layered feed-forward network
• using the sigmoid response activation function

•Backpropagation algorithm
1. Initialise all network weights to small random numbers (between -0.05 and 0.05)

2.    begin iteration

for each training example do:

propagate input to output layer;

from output layer, back propagate errors;

update weights
end epoch

3. If termination condition is met, stop else goto 2



Termination conditions

• Many thousands of iterations (epochs or cycles) may be necessary to learn a 
classification mapping
• The more complex the mapping to be learnt, the more cycles will be required

• Several termination conditions are used:
• stop after a given number of cycles

• stop when the error on the training examples (or on a separate validation set) falls 
below some agreed level

• Stopping too soon results in underfitting, too late in overfitting



Backpropagation as a search

• Learning is a search for a network weight vector to implement the required 
mapping

• The search is hill-climbing or rather descending called steepest gradient 
descent
• The heuristic used is the total of (T-O)2 over all examples fed in a single cycle 

• the weight update produces the greatest fall in overall error for the size of step 

• As with all hill-climbing there is the danger of sticking in local minima



Problems with the search

• The size of step is controlled by the learning rate parameter
• This must be tuned for individual problems 

• If the step is too large search becomes inefficient 

• The error surface tends to have
• extensive flat areas

• troughs with very little slope

• It can be difficult to reduce error in such regions
• Weights have to move large distances and it can be hard to determine the right

direction

• High numerical accuracy is required, e.g. 32-bit floating point

• On the bright side there tend to be many global minima and few local minima



The trained network

• After learning, Backpropagation may be used as a classifier:
• Descriptions of new examples are fed into the network and the class is read 

from the output layer

• For 1-out-of-N output representations, exact values of 0 and 1 will not 
usually be obtained 

• Sensitivity analysis (using test data) determines which attributes are 
most important for classification
• An attribute is regarded as important if small changes in its value affect the 

classification 


