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1 Eigenvalues and Eigenvectors
 Eigenvalue problem  (one of the most important problems in the 

linear algebra):

If A is an nn matrix, do there exist nonzero vectors x in Rn

such that Ax is a scalar multiple of x?

 Eigenvalue and Eigenvector :

A: an nn matrix
: a scalar (could be zero)
x: a nonzero vector in Rn

A x x

Eigenvalue

Eigenvector

※ Geometric Interpretation

(The term eigenvalue is from the German word Eigenwert, meaning 
“proper value”)

x

A x = x

x

y
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 Ex 1:  Verifying eigenvalues and eigenvectors












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02
A 1

1

0

 
  
 

x

1 1

2 0 1 2 1
2 2

0 1 0 0 0
A

       
          

       
x x

Eigenvalue

2 2

2 0 0 0 0
1 ( 1)

0 1 1 1 1
A

       
            

        
x x

Eigenvalue

Eigenvector

Eigenvector

2

0

1

 
  
 

x
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 Thm. 1: The eigenspace corresponding to  of matrix A

If A is an nn matrix with an eigenvalue , then the set of all 

eigenvectors of  together with the zero vector is a subspace 

of Rn. This subspace is called the eigenspace of 
Proof:

x1 and x2 are eigenvectors corresponding to 

1 1 2 2(i.e.,  ,   )A A  x x x x

1 2 1 2 1 2 1 2

1 2

(1) ( ) ( )

     (i.e.,   is also an eigenvector corresponding to )

A A A

λ

        



x x x x x x x x

x x

1 1 1 1

1

(2) ( ) ( ) ( ) ( )

     (i.e.,   is also an eigenvector corresponding to )

A c c A c c

c

 



  x x x x

x

Since this set is closed under vector addition and scalar 
multiplication, this set is a subspace of Rn .
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 Ex 3: Examples of eigenspaces on the xy-plane

For the matrix A as follows, the corresponding eigenvalues 
are 1 = –1 and 2 = 1:











10

01
A

Sol:

0 1 0 0 0 0
 1

0 1
A

y y y y

         
           

         

For the eigenvalue 1 = –1, corresponding vectors are any vectors on the x-axis

1 0
 1

0 0 1 0 0 0

x x x x
A

          
            

         

For the eigenvalue 2 = 1, corresponding vectors are any vectors on the y-axis

※ Thus, the eigenspace
corresponding to  = –1 is the x-
axis, which is a subspace of R2

※ Thus, the eigenspace
corresponding to  = 1 is the y-
axis, which is a subspace of R2
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※ Geometrically speaking, multiplying a vector (x, y) in R2 by the matrix A
corresponds to a reflection to the y-axis, i.e., left multiplying A to v can 
transform v to another vector in the same vector space

0 0

0 0

0
1 1

0

x x x
A A A A A

y y y

x x

y y

          
              

          

     
        

     

v
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(1) An eigenvalue of A is a scalar  such that                          

 Thm. 2: Finding eigenvalues and eigenvectors of a matrix AMnn

det( ) 0I A  

(2) The eigenvectors of A corresponding to  are the nonzero

solutions of                       

 Characteristic polynomial of AMnn:
1

1 1 0det( ) ( ) n n
nI A I A c c c    

       

 Characteristic equation of A:
det( ) 0I A  

( )I A  x 0

Let A be an nn matrix.

has nonzero solutions for x iff                          ( )I A  x 0 det( ) 0I A  

 Note: follwing the definition of the eigenvalue problem
(homogeneous system)    ( )A A I I A       x x x x x 0

(The above iff results comes from the equivalent conditions on Slide 4.101)
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 Ex 4: Finding eigenvalues and eigenvectors















51

122
A

Sol: Characteristic equation:

2

2 12
det( )

1 5

3 2 ( 1)( 2) 0

I A





   


 

 

      

Eigenvalue: 2 ,1 21  

 2 ,1 
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2(2) 2   
1

2
2

G.-J. E.

1

2

4 12 0
( )

1 3 0

4 12 1 3

1 3 0 0

3 3
,   0

1

x
I A

x

x s
s s

x s


     

       
    

    
    

   

     
        

    

x

1(1) 1   
1

1
2

G.-J. E.

1

2

3 12 0
( )

1 4 0

3 12 1 4

1 4 0 0

4 4
,   0

1

x
I A

x

x t
t t

x t


     

       
    

    
    

   

     
        

    

x
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















200
020
012

A

Sol: Characteristic equation:

3

2 1 0

0 2 0 ( 2) 0

0 0 2

I A



  



 

     



Eigenvalue: 2

 Ex 5: Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding eigenvectors for 

the matrix A. What is the dimension of the eigenspace of 

each eigenvalue?
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The eigenspace of λ = 2:

1

2

3

0 1 0 0

( ) 0 0 0 0

0 0 0 0

x

I A x

x



     
     

  
     
          

x

0,  ,
1
0
0

0
0
1

0

3

2

1





























































tsts
t

s

x
x
x

1 0

0 0 , : the eigenspace of   corresponding to 2

0 1

s t s t R A 

    
    

      
        

Thus, the dimension of its eigenspace is 2
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 Notes:

(1)  If an eigenvalue 1 occurs as a multiple root (k times) for 

the characteristic polynominal, then 1 has multiplicity k

(2)  The multiplicity of an eigenvalue is greater than or equal 

to the dimension of its eigenspace. (In Ex. 5, k is 3 and 

the dimension of its eigenspace is 2)
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 Ex 6：Find the eigenvalues of the matrix A and find a basis 

for each of the corresponding eigenspaces






















3001
0201
10510
0001

A

Sol: Characteristic equation:

2

1 0 0 0

0 1 5 10

1 0 2 0

1 0 0 3

( 1) ( 2)( 3) 0

I A










  



 
 

 

 

    

Eigenvalues: 3 ,2 ,1 321  
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1(1) 1  

1

2
1

3

4

0 0 0 0 0

0 0 5 10 0
( )

1 0 1 0 0

1 0 0 2 0

x

x
I A

x

x



    
    


       
     
    

     

x

1

G.-J.E.
2

3

4

2 0 2

1 0
,   , 0

2 0 2

0 1

x t

x s
s t s t

x t

x t

        
       
           
       
       

      

 

1

2

0

2

,

0

0

1

0





























































 is a basis for the eigenspace 
corresponding to 1 1  

※The dimension of the eigenspace of λ1 = 1 is 2



7.15

2(2) 2 

1

2
2

3

4

1 0 0 0 0

0 1 5 10 0
( )

1 0 0 0 0

1 0 0 1 0

x

x
I A

x

x



    
    


       
    
    

     

x

1

G.-J.E.
2

3

4

0 0

5 5
,   0

1

0 0

x

x t
t t

x t

x

     
     
        
     
     

    

 

0

1

5

0











































 is a basis for the eigenspace 
corresponding to 2 2  

※The dimension of the eigenspace of λ2 = 2 is 1
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3(3) 3 

1

2
3

3

4

2 0 0 0 0

0 2 5 10 0
( )

1 0 1 0 0

1 0 0 0 0

x

x
I A

x

x



    
    


       
    
    

    

x

1

G.-J.E.
2

3

4

0 0

5 5
,   0

0 0

1

x

x t
t t

x

x t

     
     

 
        
     
     

    

 

1

0

5

0












































 is a basis for the eigenspace 

corresponding to 3 3  

※The dimension of the eigenspace of λ3 = 3 is 1
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 Thm. 3: Eigenvalues for triangular matrices
If A is an nn triangular matrix, then its eigenvalues are 
the entries on its main diagonal

 Ex 7: Finding eigenvalues for triangular and diagonal matrices

2 0 0

(a) 1 1 0

5 3 3

A

 
 

 
 
  

1 0 0 0 0

0 2 0 0 0

(b) 0 0 0 0 0

0 0 0 4 0

0 0 0 0 3

A

 
 
 
 
 

 
  

Sol:
2 0 0

(a) 1 1 0 ( 2)( 1)( 3) 0

5 3 3

I A



    





       

  

1 2 32,  1,  3      

1 2 3 4 5(b) 1,  2,  0,  4,  3           
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 Ex 8: Finding eigenvalues and eigenvectors for standard matrices
Find the eigenvalues and corresponding eigenvectors for

1 3 0

                     3 1 0

0 0 2

A

 
 


 
  

Sol:

























200

013

031







 AI 2( 2) ( 4) 0    

1 2eigenvalues 4,  2    

1

2

For 4,  the corresponding eigenvector is (1,  1,  0).

For 2, the corresponding eigenvectors are (1,  1,  0)

                     and (0,  0,  1).







  

※ A is the standard matrix for T(x1, x2, 
x3) = (x1 + 3x2, 3x1 + x2, –2x3) (see 
Slides 7.19 and 7.20)
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 Transformation matrix     for nonstandard bases

Suppose  is the standard basis of . Since the coordinate matrix of a vector 

relative to the standard basis consists of the components of that vector, i.e., 

for any  in ,  = [ ] .

n

n
B

B R

Rx x x

         1 2( ) ( ) ,  where ( )  ( ) ( )

is the standard matrix for  or the matrix of  relative to the standard 

basis 

nB B B B B
T A T A A T T T

T T

B

      x x x x e e e

1 2

The above theorem can be extended to consider a nonstandard basis ', which

consists of { , , , }n

B

v v v

         1 2' ' ' ' '
( ) ' ,  where ' ( )  ( ) ( )

is the transformation matrix for  relative to the basis '

nB B B B B
T A A T T T

T B

    x x v v v

'A
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2 Diagonalization

 Diagonalization problem :

For a square matrix A, does there exist an invertible matrix P 
such that P–1AP is diagonal?

 Diagonalizable matrix :

Definition 1: A square matrix A is called diagonalizable if 
there exists an invertible matrix P such that P–1AP is a 
diagonal matrix (i.e., P diagonalizes A)

Definition 2: A square matrix A is called diagonalizable if A
is similar to a diagonal matrix

 Notes:

This section shows that the eigenvalue and eigenvector problem 
is closely related to the diagonalization problem

※ In Sec. 6.4, two square matrices A and B are similar if there exists an invertible 
matrix P such that B = P–1AP.
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 Thm. 4: Similar matrices have the same eigenvalues

If A and B are similar nn matrices, then they have the 

same eigenvalues
Pf:

APPBBA 1similar are  and 

1 1 1 1

1 1 1

( )I B I P AP P IP P AP P I A P

P I A P P P I A P P I A

I A

   

  



   

  

      

     

 

Since A and B have the same characteristic equation, 
they are with the same eigenvalues

For any diagonal matrix in the 
form of D = λI, P–1DP = D

Consider the characteristic equation of B:

※ Note that the eigenvectors of A and B are not necessarily identical
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 Ex 1: Eigenvalue problems and diagonalization programs



















200
013
031

A

Sol:  Characteristic equation:

2

1 3 0

3 1 0 ( 4)( 2) 0

0 0 2

I A



   



 

       



1 2 3The eigenvalues : 4,  2,  2      

(1) 4  the eigenvector   1

1

1

0

 
 


 
  

p
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(2) 2  the eigenvector     2 3

1 0

1 ,   0

0 1

   
   

  
   
      

p p

1
1 2 3

1 1 0 4 0 0

[ ] 1 1 0 ,  and 0 2 0

0 0 1 0 0 2

P P AP

   
   

    
   
      

p p p

2 1 3

1

[ ]

1 1 0 2 0 0

1 1 0          0 4 0

0 0 1 0 0 2

P

P AP



   
   

   
   
      

p p p Note: If
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 Thm. 5: Condition for diagonalization

An nn matrix A is diagonalizable if and only if it has n 
linearly independent eigenvectors

※ If there are n linearly independent eigenvectors, it does not imply that there are n distinct 
eigenvalues. In an extreme case, it is possible to have only one eigenvalue with the 
multiplicity n, and there are n linearly independent eigenvectors for this eigenvalue

※ On the other hand, if there are n distinct eigenvalues, then there are n linearly 
independent eigenvectors, and thus A must be diagonalizable
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 Ex 4: A matrix that is not diagonalizable

Show that the following matrix is not diagonalizable

1 2
                          

0 1
A

 
  
 

Sol: Characteristic equation:

21 2
( 1) 0

0 1
I A


 



 
    



1 1The eigenvalue 1,  and then solve ( )  for eigenvectorsI A   x 0

1 1

0 2 1
eigenvector 

0 0 0
I A I A

   
        

   
p

Since A does not have two linearly independent eigenvectors, 

A is not diagonalizable
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 Steps for diagonalizing an nn square matrix:

Step 2: Let 1 2[   ]nP  p  p p

Step 1: Find n linearly independent eigenvectors                    

for A with corresponding eigenvalues 
1 2, , np p p

Step 3:





















n

DAPP













00

00
00

2

1

1

where ,   1,  2, ,  i i iA i n p p 

1 2, , , n  
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 Ex 5: Diagonalizing a matrix

diagonal. is such that  matrix  a Find      

113

131

111

         

1APPP

A

























Sol:  Characteristic equation:

1 1 1

1 3 1 ( 2)( 2)( 3) 0

3 1 1

I A



    





         

 

1 2 3The eigenvalues :  2,  2,  3     
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 21 

1
G.-J. E.

1 2

3

1 1 1 1 0 1 0

1 1 1 0 1 0 0

3 1 3 0 0 0 0

x

I A x

x



       
       

       
       
              

1

2 1

3

1

0     eigenvector 0

1

x t

x

x t

      
     

  
     
          

p

 22 

1
14

G.-J. E. 1
2 24

3

3 1 1 1 0 0

1 5 1 0 1 0

3 1 1 0 0 0 0

x

I A x

x



       
      

       
      
             

1
1 4

1
2 24

3

1

    eigenvector 1

4

x t

x t

x t

    
    

    
    
        

p
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 33 

1
G.-J. E.

3 2

3

2 1 1 1 0 1 0

1 0 1 0 1 1 0

3 1 4 0 0 0 0

x

I A x

x



       
       

       
       
              

1

2 3

3

1

    eigenvector 1

1

x t

x t

x t

      
     

  
     
          

p

1 2 3

1

1 1 1

[ ] 0 1 1  and it follows that

1 4 1

2 0 0

0 2 0

0 0 3

P

P AP

  
 

  
 
  

 
 

 
 
  

p p p
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 Note: a quick way to calculate Ak based on the diagonalization 
technique

1 1

2 2

0 0 0 0

0 0 0 0
(1)   

0 0 0 0

k

k
k

k
n n

D D

 

 

 

  
  
    
  
  
    

 

 

       

 

1 1 1 1 1

repeat  times

1

1 2

(2)   

0 0

0 0
     ,  where 

0 0

k k

k

k

k
k k k

k
n

D P AP D P AP P AP P AP P A P

A PD P D







    



   

 
 
  
 
 
  

  





   


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 Thm. 6: Sufficient conditions for diagonalization
If an nn matrix A has n distinct eigenvalues, then the 
corresponding eigenvectors are linearly independent and 
thus A is diagonalizable.
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 Ex 7: Determining whether a matrix is diagonalizable























300

100

121

A

Sol: Because A is a triangular matrix, its eigenvalues are

1 2 31,  0,  3     

According to Thm. 6, because these three values are 
distinct, A is diagonalizable
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 Ex 8: Finding a diagonalized matrix for a linear transformation
3 3

1 2 3 1 2 3 1 2 3 1 2 3

3

Let :  be the linear transformation given by

      ( ) ( 3 3 )

Find a basis '  for  such that the matrix for  relative 

to '  is diagonal

T R R

T x ,x ,x x x x , x x x , x x x

B R T

B



       

Sol:
The standard matrix for T is given by

1 1 1

1 3 1

3 1 1

A

  
 


 
   

From  Ex. 5 you know that λ1 = 2, λ2 = –2, λ3 = 3 and thus A is 
diagonalizable. 
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1 2 3' { , , } {( 1,  0,  1),(1,  1,  4),( 1,  1,  1)}B     v v v

 1 ' 2 ' 3 '' [ ( )]   [ ( )]   [ ( )]

2 0 0

0 2 0

0 0 3

B B BA T T T

 
 

 
 
  

v v v

The matrix for T relative to this basis is
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3 Symmetric Matrices and Orthogonal Diagonalization

 Symmetric matrix :

A square matrix A is symmetric if it is equal to its transpose:

TAA  

 Ex 1: Symmetric matrices and nonsymetric matrices





















502
031
210

A











13
34

B

















501
041
123

C

(symmetric)

(symmetric)

(nonsymmetric)
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 Thm 7: Eigenvalues of symmetric matrices

If A is an nn “symmetric” matrix, then the following 
properties are true

(1) A is diagonalizable (symmetric matrices (except the 
matrices in the form of A = aI, in which case A is already 
diagonal) are guaranteed to have n linearly independent 
eigenvectors and thus be diagonalizable)

(2) All eigenvalues of A are real numbers

(3) If  is an eigenvalue of A with the multiplicity to be k, then
 has k linearly independent eigenvectors. That is, the 
eigenspace of  has dimension k

※ The above theorem is called the Real Spectral Theorem, and the set of 
eigenvalues of A is called the spectrum of A
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 Ex 2:
Prove that a 2 × 2 symmetric matrix is diagonalizable











bc
ca

A

Pf: Characteristic equation:

0)( 22 



 cabba

bc
ca

AI 





2 2 2 2 2

2 2 2

2 2

( ) 4(1)( ) 2 4 4

2 4

( ) 4

a b ab c a ab b ab c

a ab b c

a b c

       

   

   0 real-number solutions 

As a function in , this quadratic polynomial function has a 
nonnegative discriminant as follows
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04)(  (1) 22  cba

0  ,   cba

0
  itself is a diagonal matrix

0

a c a
A

c b a

   
    
   

04)(  )2( 22  cba

The characteristic polynomial of A has two distinct real roots, 

which implies that A has two distinct real eigenvalues. 

According to Thm. 6, A is diagonalizable

※ Note that in this case, A has one eigenvalue, a, whose multiplicity is 2, 
and the two eigenvectors are linearly independent
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A square matrix P is called orthogonal if it is invertible and
 Orthogonal matrix :

1 (or )T T TP P PP P P I   

 Thm. 8: Properties of orthogonal matrices
An nn matrix P is orthogonal if and only if its column vectors 
form an orthonormal set

1 1 1 2 11 1 1 2 1

2 1 2 2 2 12 1 2 2 2 1

1 21 2

T T T
nn

T T T
T

n

T T T
n n n nn n n n

P P I

     
   

       
   
   

      

p p p p p pp p p p p p
p p p p p pp p p p p p

p p p p p pp p p p p p





      



Pf: Suppose the column vectors of P form an orthonormal set, i.e.,

 1 2   ,  where 0 for  and 1n i j i iP i j     p   p p p p p p

It implies that P–1 = PT and thus P is orthogonal
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 Ex 5: Show that P is an orthogonal matrix.























53
5

53
4

53
2

5
1

5
2

3
2

3
2

3
1

0P

Sol: If P is a orthogonal matrix, then 1   T TP P PP I   

1 2 21 2 2
3 5 3 53 3 3

2 1 2 1 4
35 5 5 3 5

5 52 4 2
33 5 3 5 3 5 3 5

1 0 0

0 0 1 0

0 0 10

TPP I

 

 

 

     
     

       
            
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1 2 1 3 2 3 1 1

2 2 3 3

we can produce 0 and 

1

       

   

p p p p p p p p

p p p p

1 2 3So, { ,  ,  } is an orthonormal set.p p p

1 2 2
3 3 3

2 1
1 2 35 5

52 4
3 53 5 3 5

Moreover, let ,  ,  and 0 ,

 

     
     

       
     

       

p p p



7.42

 Thm. 9: Properties of symmetric matrices

Let A be an nn “symmetric” matrix. If 1 and 2 are distinct 
eigenvalues of A, then their corresponding eigenvectors x1 and x2  

are orthogonal. 

1 1 2 1 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( )T T TA A A       x x x x x x x x x x
because  is symmetric

1 2 1 2 1 2 2 2 2 2 2( ) ( ) ( ) ( ) )
A

T T TA A         1 1x x x x x x x x (x x

1 2 1 2

1 2 1 2 1 2

The above equation implies ( )( ) 0,  and because 

,  it follows that 0. So,  and  are orthogonal

 

 

  

  

x x

x x x x

Pf:

※ For distinct eigenvalues of a symmetric matrix, their corresponding 
eigenvectors are orthogonal and thus linearly independent to each other 

※ Note that there may be multiple x1’s and x2’s corresponding to 1 and 2
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 Thm. 10: Fundamental theorem of symmetric matrices
An nn matrix A is orthogonally diagonalizable and has real 
eigenvalues if and only if A is symmetric 

A matrix A is orthogonally diagonalizable if there exists an 
orthogonal matrix P such that P–1AP = D is diagonal 

 Orthogonal diagonalization :

( )

1 1

1

 is orthogonally diagonalizable

 is diagonal, and  is an orthogonal matrix s.t. 

( ) ( )

T

T T T T T T T T T

A

D P AP P P P

A PDP PDP A PDP P D P PDP A

 



  

       

Pf:
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 Orthogonal diagonalization of a symmetric matrix:
Let A be an nn symmetric matrix.
(1) Find all eigenvalues of A and determine the multiplicity of each 

(2) For each eigenvalue of multiplicity 1, choose the unit eigenvector 
(3) For each eigenvalue of the multiplicity to be k  2, find a set of k

linearly independent eigenvectors. If this set {v1, v2, …, vk} is not 
orthonormal, apply the Gram-Schmidt orthonormalization process 

1 1 2 2

1 1 2 2

1 1 2 2

It is known that G.-S. process is a kind of linear transformation, i.e., the 

produced vectors can be expressed as  (see Slide 5.55), 

i. Since , , , ,

(

k k

k k

c c c

A A A

A c c c

  

  

  

   

v v v

v v v v v v

v v





 1 1 2 2

1 2

) ( )

The produced vectors through the G.-S. process are still eigenvectors for 

ii. Since , , ,  are orthogonal to eigenvectors corresponding to other

different eigenvalues (acc

k k k k

k

c c c



   



v v v v

v v v





1 1 2 2ording to Thm. 7.9),  is also

orthogonal to eigenvectors corresponding to other different eigenvalues.
k kc c c  v v v

※According to Thm. 9, eigenvectors corresponding to distinct eigenvalues are 
orthognoal



7.45

(4) The composite of steps (2) and (3) produces an orthonormal set of 
n eigenvectors. Use these orthonormal and thus linearly 
independent eigenvectors as column vectors to form the matrix P.

i. According to Thm. 8, the matrix P is orthogonal

ii. Following the diagonalization process , D = P–1AP is diagonal 

Therefore, the matrix A is orthogonally diagonalizable 
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 Ex 7: Determining whether a matrix is orthogonally diagonalizable

















111
101
111

1A



















081
812
125

2A











102
023

3A













20
00

4A

Orthogonally 
diagonalizable

Symmetric
matrix
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 Ex 9: Orthogonal diagonalization

Find an orthogonal matrix  that diagonalizes .

2 2 2

                        2 1 4

2 4 1

P A

A

 
 

 
 
   

Sol:
0)6()3(  )1( 2   AI

1 26,  3 (has a multiplicity of 2)   

1 1 2 2
1 1 1 3 3 3

1

(2)  6,  (1,  2,  2)    ( ,  ,  )       
v

v u
v

2 2 3(3)  3,  (2,  1,  0),  ( 2,  4,  5)    v v

orthogonal



Rolle’s Theorem and the Mean 

Value Theorem



a              b

f(a)=f(b)

If  you connect from f (a) to 

f (b) with a smooth curve,

Rolle’s Theorem

there will be at least one 

place where f ’(c) = 0



Rolle’s Theorem
Rolle's theorem is an important 

basic result about differentiable 

functions.  Like many basic 

results in the calculus it seems 

very obvious.  It just says that 

between any two points where 

the graph of  the differentiable 

function f (x) cuts the horizontal 

line there must be a point where 

f '(x) = 0. The following picture 

illustrates the theorem. 



Rolle’s Theorem

If  two points at the same _______ are 

connected by a continuous, 

differentiable function, then there has 

to be ________ place between those 

two points where the derivative, or 

slope, is _____.

height

at least one

zero



Rolle’s Theorem
If 1)  f (x) is continuous on [a, b],

2)  f (x) is differentiable on (a, b),  and

3)  f (a) = f (b)

then there is at least one value of  x on (a, b), 

call it c, such that  

f ’(c) = 0.

a b

f is continuous on [a, b]

differentiable on (a, b)

f(a) = f(b)



Example

Example 1 24 2)( xxxf  ]2 ,2[on 

 )2(f 8 )2(f

( f is continuous and differentiable)

Since    , then Rolle’s Theorem applies… 

)(' xf 0)1(444 23  xxxx

then,   x = –1 ,   x = 0,  and x = 1



Rolle’s Theorem
Does Rolle’s Theorem apply?

If  not, why not?

If  so, find the value of  c.

]2 ,2[4)( 2  xxfExample 2



Rolle’s Theorem
Does Rolle’s Theorem apply?

If  not, why not?

If  so, find the value of  c.

Example 3 ]1 ,1[)( 3  xxxf



Example

Example 4










0 ,

0 ,
||)(

xx

xx
xxf ]1 ,1[on 

(Graph the function over the interval on your calculator)

continuous on [-1, 1]

not differentiable at 0

not differentiable on (-1, 1)

f(-1) = 1 = f(1)

Rolle’s Theorem Does NOT apply since



Rolle’s Theorem
Does Rolle’s Theorem apply?

If  not, why not?

If  so, find the value of  c.

Example 5 ]2 ,2[
4

)(
2

2





x

x
xf



Note

This theorem only guarantees the existence of  an 

extrema in an open interval.  It does not tell you 

how to find them or how many to expect. If  YOU 

can not find such extrema, it does not mean that it 

can not be found.  In most of  cases, it is enough to 

know the existence of  such extrema.

When working with Rolle’s make sure you

1.  State f(x) is continuous on [a, b] and differentiable 

on (a, b).

2.  Show that f(a) = f(b).

3.  State that there exists at least one x = c in (a, b)

such that f ’(c) = 0.



The Mean Value Theorem is one of  the most important 

theoretical tools in Calculus. It states that if  f(x) is defined 

and continuous on the interval [a,b] and differentiable on 

(a,b), then there is at least one number c in the interval (a,b) 

(that is a<c<b) such that 

Mean Value Theorem- MVT

ab

afbf
cf






)()(
)('

In other words, there exists a point in the interval (a,b) which 

has a horizontal tangent. In fact, the Mean Value Theorem 

can be stated also in terms of  slopes. Indeed, the number 

ab

afbf



 )()(

is the slope of  the line passing through (a, f(a)) and (b, f(b)). So 

the conclusion of  the Mean Value Theorem states that there 

exists a point   such that the tangent line is parallel to the line 

passing through (a, f(a)) and (b, f(b)).



(see Picture)

The special case, when f(a) = f(b) is known as Rolle's Theorem.  

In this case, we have f '(c) =0. 



Mean Value Theorem- MVT

a b

If:   f is continuous on [a, b],

differentiable on (a, b)

Then:  there is a  c in (a, b) such 

that 

ab

afbf
cf






)()(
)('

f



Example

223 2  xx

1    ,
3

1
 cc

Example 6 1] [-1,on    2)( 23 xxxxf 

(f  is continuous and differentiable)

MVT applies)(' xf

)(' cf 1
)1(1

02






1223 2  cc

0)1)(13(  cc



Note:

( )
a b

'( ) 0 on ( , )  f x a b 

 is increasing on ( , )f a b

The graph of  f  is rising

Mean Value Theorem- MVT



Note:

( )
a b

'( ) 0 on ( , )  f x a b 

 is decreasing on ( , )f a b

The graph of  f  is falling

Mean Value Theorem- MVT



Note:

( )
a b

 is constant on ( , )f a b

The graph of  f  is level

Mean Value Theorem- MVT



Example

Example 7 126)( 2  xxxf

62)('  xxf

)3(2  x

3 iff 0  x



Finding a Tangent Line

2

11
1)('

xxdx

d
xf 










1
2/3

32/3

2/12

)2/1()2(







 ff

1
1

)('
2


c

cf

Example  8 Find all values of  c in the open interval (a, 

b) such that

]2 ,[  ,
1

)( 2
1

x

x
xf




( ) ( )
'( )

f b f a
f c

b a






c = 1



Application of MVT

222
5

1500390

05

)0()5(
 Temp. Avg. 









gg

Example  9 When an object is removed from a furnace 

and placed in an environment with a constant 

temperature of   90o F, its core temperature is 1500o F.  Five 

hours later the core temperature is 390o F.  Explain why 

there must exist a time in the interval when the 

temperature is decreasing at a rate of  222o F per hour.

By MVT, there exists a time 0 <to <5, such that g’(to) = –222o F

Solution

Let g(t) be the temperature of  the object.

Then g(0) = 1500,   g(5) = 390



Application of MVT
Two stationary patrol cars equipped with radar are 5 miles apart 

on a highway.  As a truck passes the first patrol car, its speed is 

clocked at 55 mph.  Four minutes later, when the truck passes 

the second patrol car, its speed is clocked at 50 mph.  Prove 

that the truck must have exceeded the speed limit of  55 mph at 

some time during the 4 minutes.



Cauchy’s Mean Value Theorem

Let the functions f(x) and g(x) be continuous on an 

interval [a, b], differentiable on (a, b), and g′(x)≠0 for 

all x∈(a, b). Then there is a point x=c in this interval 

such that

[f(b)−f(a)]/[g(b)−g(a)] = f′(c)/g′(c).



Geometric meaning

Suppose that a curve γ is described by the parametric equations 

x=f(t), y=g(t), where the parameter t ranges in the interval [a,b]. 

When changing the parameter t, the point of the curve in Figure 

given below runs from A(f(a),g(a)) to B(f(b),g(b)). According to 

the theorem, there is a point (f(c),g(c)) on the curve γ where the 

tangent is parallel to the chord joining the ends A and B of the 

curve.





DEFINITE INTEGRALS



TECHNIQUES OF INTEGRATION

In defining a definite integral                 , 

we dealt with a function f defined on a finite 

interval [a, b] and we assumed that f does 

not have an infinite discontinuity 

( )
b

a
f x dx



Improper Integrals

In this section, we will learn:

How to solve definite integrals 

where the interval is infinite and 

where the function has an infinite discontinuity. 



IMPROPER INTEGRALS

In this section, we extend the concept 

of a definite integral to the cases where:

 The interval is infinite

 f has an infinite discontinuity in [a, b]



IMPROPER INTEGRALS

In either case, the integral is called 

an improper integral. 



TYPE 1—INFINITE INTERVALS

Consider the infinite region S that lies:

 Under the curve y = 1/x2

 Above the x-axis

 To the right of the line x = 1



INFINITE INTERVALS

You might think that, since S is infinite 

in extent, its area must be infinite.

 However, let’s take a closer look.



INFINITE INTERVALS

The area of the part of S that lies to the left 

of the line x = t (shaded) is:

 Notice that 
A(t) < 1 no 
matter how 
large t is 
chosen.

21
1

1 1 1
( ) 1

t
t

A t dx
x x t


    






INFINITE INTERVALS

We also observe that:

1
lim ( ) lim 1 1
t t

A t
t 

 
   

 



INFINITE INTERVALS

The area of the shaded region approaches 

1 as t → ∞.



INFINITE INTERVALS

So, we say that the area of the infinite 

region S is equal to 1 and we write:

2 21 1

1 1
lim 1

t

t
dx dx

x x




  



INFINITE INTERVALS

Using this example as a guide, we define 

the integral of f (not necessarily a positive 

function) over an infinite interval as the limit 

of integrals over finite intervals.



IMPROPER INTEGRAL OF TYPE 1

If  exists for every number t ≥ a, 

then

provided this limit exists (as a finite number).

( )
t

a
f x dx

( ) lim ( )
t

a at
f x dx f x dx




 

Definition 1 a



IMPROPER INTEGRAL OF TYPE 1

If exists for every number t ≤ a, 

then

provided this limit exists (as a finite number).

Definition 1 b

( )
b

t
f x dx

( ) lim ( )
b b

tt
f x dx f x dx

 
 



CONVERGENT AND DIVERGENT

The improper integrals                  and    

are called:

 Convergent if the corresponding limit exists.

 Divergent if the limit does not exist.

( )
a

f x dx



( )

b
f x dx



Definition 1 b



IMPROPER INTEGRAL OF TYPE 1

If both                   and                    are 

convergent, then we define:

 Here, any real number a can be used.

( )
a

f x dx


 ( )
a

f x dx


( ) ( ) ( )
a

a
f x dx f x dx f x dx

 

 
   

Definition 1 c



IMPROPER INTEGRALS OF TYPE 1

Any of the improper integrals 

in Definition 1 can be interpreted 

as an area provided f is a positive 

function.



IMPROPER INTEGRALS OF TYPE 1

For instance, in case (a), suppose f(x) ≥ 0 

and the integral                  is convergent.

 Then, we define the area of the region 
S = {(x, y) | x ≥ a, 0 ≤ y ≤ f(x)} in the figure as: 

( )
a

f x dx




( ) ( )
a

A S f x dx


 



IMPROPER INTEGRALS OF TYPE 1

This is appropriate because               

is the limit as t → ∞ of the area under 

the graph of f from a to t. 

( )
a

f x dx






IMPROPER INTEGRALS OF TYPE 1

Determine whether the integral 

is convergent or divergent.

Example 1

1
(1/ )x dx







IMPROPER INTEGRALS OF TYPE 1

According to Definition 1 a, 

we have:

 The limit does not exist as a finite number.
 So, the integral is divergent.

Example 1

1 1 1

1 1
lim limln

lim(ln ln1)

limln

tt

t t

t

t

dx dx x
x x

t

t



 





 


 

  

 



IMPROPER INTEGRALS OF TYPE 1

Let’s compare the result of Example 1 with 

the example at the beginning of the section:

 Geometrically, this means the following. 

21 1

1 1
converges divergesdx dx

x x

 

 



IMPROPER INTEGRALS OF TYPE 1

The curves y = 1/x2 and y = 1/x look very 

similar for x > 0.

However, the region under y = 1/x2 to the right 

of x = 1 has finite area, but the corresponding 

region under y = 1/x has infinite area.



Note that both 1/x2 and 1/x approach 0 as 

x → ∞, but 1/x2 approaches faster than 1/x.

 The values of 1/x don’t decrease fast enough 

for its integral to have a finite value. 

IMPROPER INTEGRALS OF TYPE 1



IMPROPER INTEGRALS OF TYPE 1

Evaluate

 Using Definition 1 b, 
we have:

0 xxe dx


0 0
limx x

tt
xe dx xe dx

 
 

Example 2



IMPROPER INTEGRALS OF TYPE 1

We integrate by parts with u = x, 
dv = ex dx so that du = dx, v = ex:

0 00

1

x x x

tt t

t t

xe dx xe e dx

te e

 

   

 

Example 2



IMPROPER INTEGRALS OF TYPE 1

We know that et → 0 as t → -∞, 
and, by l’Hospital’s Rule, 

we have:
lim lim

1
lim

lim ( )

0

t
tt t

tt

t

t

t
te

e

e

e

 










 



Example 2



IMPROPER INTEGRALS OF TYPE 1

Therefore,

0
lim ( 1 )

0 1 0

1

x t t

t
xe dx te e

 
   

   

 



Example 2



IMPROPER INTEGRALS OF TYPE 1

Evaluate

 It’s convenient to choose a = 0 in Definition 1 c:

2

1

1
dx

x



 

0

2 2 20

1 1 1

1 1 1
dx dx dx

x x x

 

 
 

    

Example 3



IMPROPER INTEGRALS OF TYPE 1

We must now evaluate the integrals 

on the right side separately—as 

follows.

Example 3



IMPROPER INTEGRALS OF TYPE 1

20

20

1

0

1 1

1

1

1

lim
1

lim tan

lim(tan tan 0)

lim tan

2

t

t

t

t

t

t

dx
x

dx

x

x

t

t











 















 









Example 3

0

2

0

2

0
1

1 1

1

1

lim
1

lim tan

lim (tan 0 tan )

0
2

2

tt

t t

t

dx
x

dx

x

x

t













 











 

 
   

 









IMPROPER INTEGRALS OF TYPE 1

Since both these integrals are convergent, 

the given integral is convergent and

2

1

1 2 2
dx

x

 





  



Example 3



IMPROPER INTEGRALS OF TYPE 1

As 1/(1 + x2) > 0, the given improper integral 

can be interpreted as the area of the infinite 

region that lies under the curve y = 1/(1 + x2) 

and above the x–axis.

Example 3



IMPROPER INTEGRALS OF TYPE 1

For what values of p is the integral

convergent?

 We know from Example 1 that, if p = 1, 
the integral is divergent.

 So, let’s assume that p ≠ 1.

1

1
p

dx
x





Example 4



IMPROPER INTEGRALS OF TYPE 1

Then,

1 1

1

1

1

1
lim

lim
1

1 1
lim 1

1

t p
p t

x tp

t
x

pt

dx x dx
x

x

p

p t







 









 

  

 
    

 

Example 4



IMPROPER INTEGRALS OF TYPE 1

If p > 1, then p – 1 > 0.

So, as t → ∞, t p-1
→ ∞ and 1/t p-1 → 0.

 Therefore,

 So, the integral converges.

1

1 1
if 1

1p
dx p

x p



 


Example 4



IMPROPER INTEGRALS OF TYPE 1

However, if p <1, then p – 1 < 0.

So,

 Thus, the integral diverges.

1
1

1
asp

p
t t

t



  

Example 4



IMPROPER INTEGRALS OF TYPE 1

We summarize the result of Example 4 

for future reference:

is:

 Convergent if p > 1

 Divergent if p ≤ 1

Definition 2

1

1
p

dx
x







TYPE 2—DISCONTINUOUS INTEGRANDS

Suppose f is a positive continuous 

function defined on a finite interval [a, b) 

but has a vertical asymptote at b.



DISCONTINUOUS INTEGRANDS

Let S be the unbounded region under 

the graph of f and above the x-axis 

between a and b.

 For Type 1 integrals, the regions extended 
indefinitely in a horizontal direction.

 Here, the region is infinite in a vertical direction.



DISCONTINUOUS INTEGRANDS

The area of the part of S between a and t 

(shaded region) is:
( ) ( )

t

a
A t f x dx 



DISCONTINUOUS INTEGRANDS

If it happens that A(t) approaches a definite 

number A as t → b-, then we say that the area 

of the region S is A and we write:

( ) lim ( )
b t

a at b
f x dx f x dx


 



DISCONTINUOUS INTEGRANDS

We use the equation to define an improper 

integral of Type 2 even when f is not a positive 

function—no matter what type of discontinuity 

f has at b.



IMPROPER INTEGRAL OF TYPE 2

If f is continuous on [a, b) and is discontinuous 

at b, then 

if this limit exists (as a finite number).

( ) lim ( )
b t

a at b
f x dx f x dx


 

Definition 3 a



IMPROPER INTEGRAL OF TYPE 2

If f is continuous on (a, b] and is discontinuous 

at a, then

if this limit exists (as a finite number).

( ) lim ( )
b b

a tt a
f x dx f x dx


 

Definition 3 b



IMPROPER INTEGRAL OF TYPE 2

Definition 3 b is illustrated for the case 

where f(x) ≥ 0 and has vertical asymptotes 

at a and c, respectively.

Definition 3 b



IMPROPER INTEGRAL OF TYPE 2

The improper integral                 

is called:

 Convergent if the corresponding limit exists. 

 Divergent if the limit does not exist.

( )
b

a
f x dx

Definition 3 b



IMPROPER INTEGRAL OF TYPE 2

If f has a discontinuity at c, where a < c < b, 

and both                  and                  are 

convergent, then we define:

( )
c

a
f x dx ( )

b

c
f x dx

( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx   

Definition 3 c



IMPROPER INTEGRAL OF TYPE 2

Definition 3 c is illustrated for the case 

where f(x) ≥ 0 and has vertical asymptotes 

at a and c, respectively.

Definition 3 c



IMPROPER INTEGRALS OF TYPE 2

Find 

 First, we note that the given integral is improper 
because has the vertical asymptote 
x = 2.

5

2

1

2
dx

x 

( ) 1/ 2f x x 

Example 5



IMPROPER INTEGRALS OF TYPE 2

 The infinite discontinuity occurs at the left end-point 
of [2, 5].

 So, we use Definition 3 b:

 Thus, the given improper integral is convergent.

5 5

2 2

5

2

2

lim
2 2

lim 2 2

lim 2( 3 2)

2 3

tt

tt

t

dx dx

x x

x

t














 

 


  



 

Example 5



IMPROPER INTEGRALS OF TYPE 2

 Since the integrand is positive, 
we can interpret the value of the integral 
as the area of the shaded region here. 

Example 5



IMPROPER INTEGRALS OF TYPE 2

Determine whether                   

converges or diverges.

 Note that the given integral is improper 
because:

2

0
sec



 x dx

( / 2)
lim sec

x
x

 
 

Example 6



IMPROPER INTEGRALS OF TYPE 2

 Using Definition 2 a, we have:

 This is because sec t → ∞ and tan t → ∞ as t → (π/2)-.

 Thus, the given improper integral is divergent.

 

/ 2

0 0( / 2)

( / 2) 0

( / 2)

sec lim sec

lim ln sec tan

lim ln(sec tan ) ln1

t

x

t

x

x

x dx x dx

x x

t t























 


    

 

Example 6



IMPROPER INTEGRALS OF TYPE 2

Evaluate              if possible.

 Observe that the line x = 1 is a vertical asymptote 
of the integrand. 

3

0 1

dx

x 

Example 7



IMPROPER INTEGRALS OF TYPE 2

 As it occurs in the middle of the interval [0, 3], 
we must use Definition 3 c with c = 1:

where

 This is because 1 – t → 0+ as t → 1-.

1

0 01 1 0

1

1

lim lim 1
1 1

lim(ln 1 ln 1)

limln(1 )

tt

t t

t

t

dx dx
x

x x
t

t

 





 





  
 

   

   

 

Example 7

3 1 3

0 0 11 1 1

dx dx dx

x x x
 

    



IMPROPER INTEGRALS OF TYPE 2

Thus, is divergent. 

This implies that                    is divergent.

 We do not need to evaluate 

1

0
/( 1)dx x 

3

0
/( 1)dx x 

3

1
/( 1).dx x 

Example 7





WARNING

Then, we might have made the following 

erroneous calculation:

 This is wrong because the integral is improper 
and must be calculated in terms of limits.

3
3

0 0

ln 1
1

ln 2 ln1

ln 2

dx
x

x
  

 







WARNING

From now, whenever you meet the symbol 

, you must decide, by looking at 

the function f on [a, b], whether it is either:

 An ordinary definite integral

 An improper integral

( )
b

a
f x dx



IMPROPER INTEGRALS OF TYPE 2

Evaluate

 We know that the function f(x) = ln x has 
a vertical asymptote at 0 since                      .

 Thus, the given integral is improper, 
and we have:

1

0
ln x dx

0
lim ln
x

x


 

1 1

0 0
ln lim ln

tt
x dx x dx


 

Example 8



IMPROPER INTEGRALS OF TYPE 2

 Now, we integrate by parts with u = ln x, 
dv = dx, du = dx/x, and v = x:


1 11
ln ln

1ln1 ln (1 )

ln 1

tt t
x dx x x dx

t t t

t t t

 

   

   

 

Example 8



IMPROPER INTEGRALS OF TYPE 2

 To find the limit of the first term, 
we use l’Hospital’s Rule:

0 0

20

0

ln
lim ln lim

1/
1/

lim
1/

lim( )

0

t t

t

t

t
t t

t
t

t
t

 





 










 



Example 8



IMPROPER INTEGRALS OF TYPE 2

Therefore,

1

0 0
ln lim( ln 1 )

0 1 0

1

t
x dx t t t


   

   

 



Example 8



IMPROPER INTEGRALS OF TYPE 2

The geometric interpretation 

of the result is shown.

 The area of the shaded 
region above y = ln x
and below the x-axis is 1.

Example 8



A COMPARISON TEST FOR IMPROPER INTEGRALS

Sometimes, it is impossible to find the exact 

value of an improper integral and yet it is 

important to know whether it is convergent 

or divergent.

 In such cases, the following theorem is useful. 

 Although we state it for Type 1 integrals, 
a similar theorem is true for Type 2 integrals.



COMPARISON THEOREM

Suppose f and g are continuous functions 

with f(x) ≥ g(x) ≥ 0 for x ≥ a.

a. If                   is convergent, then 
is convergent.

b. If                  is divergent, then 
is divergent.

( )
a

f x dx


 ( )
a

g x dx




( )
a

g x dx


 ( )
a

f x dx






COMPARISON THEOREM

We omit the proof of the theorem.

However, the figure makes it seem 

plausible. 



COMPARISON THEOREM

If the area under the top curve y = f(x) 

is finite, so is the area under the bottom 

curve y = g(x).



COMPARISON THEOREM

If the area under y = g(x) is infinite, 

so is the area under y = f(x).



COMPARISON THEOREM

Note that the reverse is not necessarily 

true: 

 If                  is convergent,                   may 
or may not be convergent. 

 If                   is divergent,                   may 
or may not be divergent. 

( )
a

g x dx


 ( )
a

f x dx




( )
a

f x dx


 ( )
a

g x dx






COMPARISON THEOREM

Show that                is convergent.

 We can’t evaluate the integral directly.

 The antiderivative of e-x2 is not an elementary function 
(as explained in Section 7.5).

2

0

xe dx






Example 9



COMPARISON THEOREM

We write:

 We observe that the first integral on the right-hand side 
is just an ordinary definite integral.

2 2 21

0 0 1

x x xe dx e dx e dx
 

     

Example 9



COMPARISON THEOREM

 In the second integral, we use the fact that, 
for x ≥ 1, we have x2 ≥ x.

 So, –x2 ≤ -x and, therefore, e-x2  
≤ e-x.

Example 9



COMPARISON THEOREM

The integral of e-x is easy to evaluate:

1 1

1

1

lim

lim( )

tx x

t

t

t

e dx e dx

e e

e


 



 







 



 

Example 9



COMPARISON THEOREM

Thus, taking f(x) = e-x and g(x) = e-x2

in the theorem, we see that 

is convergent. 

 It follows that                  is convergent.

2

1

xe dx






2

0

xe dx






Example 9



COMPARISON THEOREM

In Example 9, we showed that 

is convergent without computing its value.

 In Exercise 70, we indicate how to show 
that its value is approximately 0.8862

 In probability theory, it is important to know 
the exact value of this improper integral.

 Using the methods of multivariable calculus, 
it can be shown that the exact value is

2

0

xe dx






/ 2.



COMPARISON THEOREM

The table illustrates the definition of 

an improper integral by showing how 

the (computer- generated) values of              

approach           as t becomes large.

 In fact, these values 
converge quite quickly 
because e-x2

→ 0 very 
rapidly as x → ∞. 

/ 2

2

0

t xe dx





COMPARISON THEOREM

The integral                       is divergent by 

the Comparison Theorem since

is divergent by Example 1 or 

by Definition 2 with p = 1.

1

1 xe
dx

x


 


1 1xe

x x




1
(1/ )x dx





Example 10



COMPARISON THEOREM

The table illustrates the divergence of 

the integral in Example 10.

 It appears the values 
are not approaching 
any fixed number. 


