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1 Eigenvalues and Eigenvectors

= Eigenvalue problem (one of the most important problems in the
linear algebra):

If Aisan nxn matrix, do there exist nonzero vectorsx in R"

such that Ax isascalar multiple of x?

(The term elgenvalue is from the German word Eigenwert, meaning
“proper value™)

= Eigenvalue and Eigenvector :

A. an nxn matrix
A: ascaar (could be zero) ¢ Geometric | nterpretation

X: anonzero vector in R M
AX = AX

Eigenvalue

AX = AX
| | >

Eigenvector




« EX 1. Veifying eigenvalues and eigenvectors

SIS P

Eli genvalue

2 0|1 2 1

AX, = = =2| |=2X,
O -1|/0 0 0
I

Eigenvector

Eigenvalue

e e

I
Eigenvector
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- Thm. 1. The eigenspace corresponding to A of matrix A

If Aisan nxn matrix with an eigenvalue A, then the set of all
eigenvectorsof A together with the zero vector is a subspace

of R". This subspace is called the eigenspace of 1

Proof:
X, and X, are eigenvectors corresponding to A

(l.e, AX;=AX,, AX, =AX,)
D A(X,+X,) = AX; + AX, = AX, + AX, = (X, +X,)

(i.e,, X, +X, Isalso an eigenvector corresponding to 4)
(2) A(Cx;) = c(Ax;) = c(Ax,) = A(CX,)

(i.e,, cx,isasoan eigenvector corresponding to 4)

Since this set Is closed under vector addition and scalar
multiplication, this set is a subspace of R" .
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= EX 3: Examples of elgenspaces on the xy-plane

For the matrix A as follows, the corresponding elgenvalues
aet,=-land 4,= 1

-1 0
A=
o
Sol:

For the eigenvalue 4, = —1, corresponding vectors are any vectors on the x-axis
X -1 0| | x —X X | 2% Thus, the eigenspace
Al = = = correspondingto A = —1 isthe x-
0 0O 1]1]0 0 0 axis, which is a subspace of R

For the eigenvalue 4, = 1, corresponding vectors are any vectors on the y-axis

0 -1 0|0 0 O| 3 Thus, the eigenspace
Al = 0 1 = corresponding to 4 = 1isthey-
y y y y axis, which is a subspace of R?
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> Geometrically speaking, multiplying avector (x, y) in R* by the matrix A
correspondsto areflection to the y-axis, i.e., left multiplying Ato v can
transform v to another vector in the same vector space

weG Al G- A
{5

I
|
Ik< ><|

Ly

(—x v (0,3 &[0 v h:n
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« Thm. 2: Finding elgenvalues and eigenvectors of amatrix AeM_
Let A be an nxn matrix.

(1) An eigenvalue of Aisascaar A such that det(Al — A)=0
(2) The eigenvectors of A corresponding to 4 are the nonzero
solutionsof (Al —A)x=0
= Note: follwing the definition of the eigenvalue problem
AX=AX = AX=AIXx = (Al — Ax=0 (homogeneous system)
(Al — A)x=0 has nonzero solutions for x iff det(Al —A)=0
(The above iff results comes from the equivalent conditions on Slide 4.101)

= Characteristic equation of A:
det(A1l —A) =0

» Characteristic polynomial of AeM_.;:
det(Al - A) =|(Al —A)|=2"+c A" +---+CcA+C,

1.7



= EX 4: Finding eigenvalues and eigenvectors
2 -12
A=
1 -5
Sol: Characteristic eguation:

A-2 12
-1 A+5

=1°+31+2=(1+)(1+2)=0
=>A=-1-2

dﬂM—N=|

Eigenvalue: 4, =-1 1, =-2
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B - =3 120 x| |0
v TG

—_3 12} G.-J.E. {1 _4}
p— >
-1 4 0 0
. XH‘“H“] %0
RS t 1
|4 2] x| |O
24 =2=> _A)X{—l JLJ_M
__4 12} G.-J.E {1 _3}
— >
-1 3 O O

T4 e




= EX 5: Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding e genvectors for
the matrix A. What is the dimension of the e genspace of
each eigenvalue?

2 10
A=[0 2 0
00 2

Sol: Characteristic equation:
A-2 -1 0
|/1I—A|= 0 A-2 0 |=(1-2°=0
0 0 A1-2
Eigenvalue: 1 =2
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The eigenspace of 1 = 2

0 -1 0] x 0
(Al -Ax={0 0 O0Ofx |=|0
0 0 0] x]| |0]
x| [s] [1] [O]
X, |=|0|=90(+t 0}, s,;t=0
X | [t] |10] [1

1 0
18| 0|+t] O|ls,t e R;:theagenspaceof Acorrespondingtod =2
0 1

Thus, the dimension of its elgenspaceis 2

711



= Notes:
(1) If an eigenvalue A, occurs as a multiple root (k times) for
the characteristic polynominal, then 4, has multiplicity k

(2) The multiplicity of an eigenvalue is greater than or equal
to the dimension of itseigenspace. (In Ex. 5, kis3 and
the dimension of its eigenspace is 2)
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« EX 6  Find the eigenvalues of the matrix A and find abasis
for each of the corresponding eigenspaces

100 O
0 15 -10
A=11 0 2 o0
100 3

Sol: Characteristic eguation:
A-1 0 0 0

0 4-1 -5 10
Al - A=
-1 0 1-2 O
-1 0 0 4-3
=(A-1*(1-2)(1-3)=0
Eigenvalues: 4, =1, 4, =2, 4, =3
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"0 0 0 071 x] [0]
) 1WA))(OO—Slezo
— — — = =
D A4 -1 0 -1 0|[x| |O
10 0 -2|x]| |0
_Xl_ [ 2t | 0] [-2
G-E| X, S 1 0)
= = =s| |+t . St=0
X 2t 0 2
X, | [t ] [0] | 1]
o] [-2]l
1(| O
= ol'l 2 > isabasisfor the eigenspace
correspondingto 4, =1
O|| 1

< The dimension of the eigenspace of 1, =1is2
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(1 0 0 Of[x] [O]
0O 1 -5 10|| X, 0
DAL=2 =LAl -AX= =
@ k=2 =@ -Ax=| o o o5
-1 0 0 -1fx,| |0]
'x1 [0] [0
G.-JE.
= X2:5t:t5,t¢0
X, t 1
X | (0] [0
K—O—\
o1 . . .
—. . Isabasisfor the eigenspace
11| correspondingto A, =2
0

% The dimension of the eigenspace of 1, =2is1
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(2 0 O O"xl_ (0
3 3 = (Al - A)x = 0 2 -5 10|| x, B 0
3 4= -1 0 1 Ofx]| |0
-1 0 0 0] x| |0
_Xl_ 071 To
G-JE| X, 5t -5
= = =1 , t#0
X, 0 0
X | [t ] |1
(r— O—\
-5 . : .
— . isabasisfor the eigenspace
O || correspondingto4, =3
1

> The dimension of the eigenspace of 1, = 3is1 7.16



- Thm. 3: Eigenvaluesfor triangular matrices

If Aisan nxn triangular matrix, then its eigenvalues are
the entries on its main diagonal

« EX 72 Finding eigenvalues for triangular and diagonal matrices

100 0 O
2 0 0 0 20 0 O
@A=[-1 1 0| (MA=[0 00 0 O
5 3 -3 0 00 -4 0
) ) 0 00 0 3
Sol:
A-2 0 0
@A -A=[ 1 1-1 0 |=(A-2A-1(A+3=0
-5 -3 A+

=4 =2 A =1 % =-3
(b) A =-1 2,=2, 5=0, A, =—4, J =3
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= EX 8: Finding eigenvalues and elgenvectors for standard matrices
Find the eilgenvalues and corresponding el genvectorsfor

Sol:

M- A=

—eagenvaues A, =4, 4, =-2

1 3 0
A=3 1 O

00 -2

(A-1 -3 0 |
-3 A-1 O

0 0 A+2

2% A isthe standard matrix for T(x,, X,,
Xg) = (Xq * 3Xp, 3y + X, —2X3) (see
Slides 7.19 and 7.20)

= (1+2%(A-4)=0

For 1, = 4, the corresponding eigenvector is (1, 1, 0).
For A, =—2, the corresponding elgenvectorsare(1, —1, 0O)
and (O, O, 1).
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« 1ransformation matrix A' for nonstandard bases

Suppose B isthe standard basis of R". Since the coordinate matrix of avector
relative to the standard basis consists of the components of that vector, i1.e.,

forany x inR", x = [x];.

T(x) = Ax=[T(x)]. = A[x],, where A= [[T(el)]B [T(e)]. ---[T(en)]B]
IS the standard matrix for T or the matrix of T rdative to the standard
basis B

The above theorem can be extended to consider a nonstandard basis B', which
consistsof {v,,V,,...,V_}

[T, = A'[X],, where A'=|[T(v)], [T(v)], [TV, |
IS the transformation matrix for T relative to the basis B'
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2 Diagonalization

= Diagonalization problem :

For a sguare matrix A, does there exist an invertible matrix P
such that P-AP is diagonal ?

= Diagonalizable matrix :

Definition 1: A square matrix A is called diagonalizable if
there exists an invertible matrix P such that PtAPisa
diagonal matrix (i.e., P diagonalizes A)

Definition 2: A square matrix A is called diagonalizableif A
Issimilar to adiagonal matrix
> In Sec. 6.4, two sguare matrices A and B are similar if there exists an invertible

matrix P such that B = P-1AP.
= Notes;

This section shows that the elgenvalue and eigenvector problem
IS closely related to the diagonalization problem
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= Thm. 4: Similar matrices have the same elgenvalues

Pf:

If A and B are similar nxn matrices, then they have the
same elgenvalues

For any diagonal matrix in the

. . . -1

Consider the characteristic egudation of B:
Al —=B|=|Al -P*AP| £[PAIP- PAP| =|P (Al - A)P)
=|P|4l - A|P|=|P||P||Al - A=|P*P||Al - A

~ |21 - A

Since A and B have the same characteristic equation,
they are with the same eigenvalues

><¢ Note that the eigenvectors of A and B are not necessarily identical 291



= EX 1. Eigenvalue problems and diagonalization programs

1 3 0
A=3 1 O
0 0 -2
Sol: Characteristic equation:
A-1 -3 0
[Al-A=-3 1-1 O =(1-4(1+2)°=0
0 0 A+2

Theeigenvadues: 4, =4, 4, =-2, 4,=-2

() A=4= theegenvector p,=| 1

1.22



(2) 1 =-2=theagenvector p, =| -1|, p,=|0

_O_ _1_
1 1 0 4 0 O]
P=[p, p, p.]=|1 -1 0|,andP*AP=|0 -2 O
0 0 1 0 0 -2]
- Note: If P=[p, p;, Pl

1 1 O] 2 0 0]

=1-1 10 = P'AP=|0 4 O

0 0 1 O 0 -2

7.23



- Thm. 5: Condition for diagonalization

An nxn matrix Alisdiagonalizableif and only if it hasn
linearly independent elgenvectors

><¢ If there are n linearly independent eigenvectors, it does not imply that there are n distinct
eigenvalues. In an extreme casg, it is possible to have only one eigenvalue with the
multiplicity n, and there are n linearly independent eigenvectors for this eigenvalue

»< On the other hand, if there are n distinct eigenvalues, then there are n linearly
independent elgenvectors, and thus A must be diagonalizable

1.24



= EX 4: A matrix that is not diagonalizable
Show that thefollowing matrix isnot diagonalizable

5

Sol: Characteristic eguation:

A-1 -2 ,
2 -A=" A_]Jz(/’t—l) -0

Theeaigenvdue 4, =1, and then solve (4,1 — A)x =0 for eilgenvectors

| — A= A—O 2 —> @ genvector —1
4 = o o g Pi=| g

Since A does not have two linearly independent eigenvectors,
Aisnot diagonalizable

7.25



= Steps for diagonalizing an nxn square matrix:

Step 1: Find n linearly independent elgenvectorsp,,pP.,- P,
for A with corresponding eigenvalues 4,, 4,,..., 4.

Step2:Let P=[p,p, - Pp,]

Step3 _ﬂ]_ O O_
piap=p=| ) %2 7 O
0 0 - 4

7.26



= EX 5: Diagonalizing a matrix

1 -1 -1
A=| 1 3 1
-3 1 -1

Find amatrix P such that P AP isdiagonal.

Sol: Characteristic eguation:

A-1 1 1
|/1I—A|: -1 A-3 -1|=(1-2)(1+2)(1-3)=0
3 -1 A+1

Theeigenvalues: 4, =2, 4, =-2, 4,=3

1.27



Lh=2=41 -A=
% [t
X, 0
REAR

N
—

1 1 1
1 -1 -1
3 -1 3

= elgenvectorp, =| 0

3 1 1
-1 -5 -1
'3 -1 -1

—> egenvector p, =

G.-J. E.

G.-J E

v
o O B

v
_ O O B |

o — O

SRS X

[

N[
o N

IS X
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P:[pl

PAP =

P

p3] =

2 1
-1 O
3 -1

1
-1

G.-J. E.

A 4

4_

= elgenvector p, =

-1 1

1 4

0O -1 1

—11

1

and it follows that

SRS X

7.29



- Note: aquick way to calculate Ak based on the diagonalization

technique

K
0
()D=| .

0

(2 D=P'AP = D“= P'AP P'AP

A = PD*P, where D* =

A

2

0

0

— D¥ =

repeat\lg times
_ﬂik 0
0 A

O O
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= Thm. 6: Sufficient conditions for diagonalization
If an nxn matrix A has n distinct eigenvalues, then the
corresponding eigenvectors are linearly independent and
thus A is diagonalizable.
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« EX 7: Determining whether a matrix is diagonalizable

1 -2 1~
A=[0 0 1
0 0 -3

Sol: Because A isatriangular matrix, its eigenvalues are

W=1, 2,=0, J=-3

According to Thm. 6, because these three values are
distinct, A isdiagonalizable

7.32



= EX 8: Finding a diagonalized matrix for alinear transformation
Let T: R® > R’ be the linear transformation given by
T %) = (% =X =X, % + 3%, + X5, = 3% + X, = X;)
Find abasis B' for R® such that the matrix for T relative

toB' isdiagonal
Sol:
The standard matrix for T is given by
(1 -1 -1]
A=l1 3 1
-3 1 -1

From Ex.5youknow that 1, =2,1,=-2, 1;=3 andthusAis
diagonalizable.
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B'={V,,V,,va ={(-1 0, D,L, -1 4),(-1 1, D}

The matrix for T relativeto thisbasisis

A =

[T(v)le [TV )le [TVl ]
2 0 0
0 -2 0

0 0 3

7.34



3 Symmetric Matrices and Orthogonal Diagonalization

= Symmetric matrix :

A sguare matrix A issymmetric if it isequal to its transpose:
A=A

= EX 1. Symmetric matrices and nonsymetric matrices
—2

A=

B =

0 1
1 3

-2 0

0
5

o Bk

Ol

(symmetric)

(symmetric)

(nonsymmetric)
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= Thm 7: Eigenvalues of symmetric matrices

If Alsan nxn “symmetric” matrix, then the following
properties are true

(1) Aisdiagonalizable (symmetric matrices (except the
matricesin theform of A =al, in which case A is aready
diagonal) are guaranteed to have n linearly independent
eigenvectors and thus be diagonalizable)

(2) All eigenvalues of A are real numbers

(3) If A1san eigenvalue of A with the multiplicity to be k, then
A has k linearly independent eigenvectors. That is, the
eigenspace of A has dimension k

»< The above theorem is called the Real Spectral Theorem, and the set of
eigenvalues of A is called the spectrum of A
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« EX 2
Prove that a2 x 2 symmetric matrix is diagonalizable

¥

Pf: Characteristic equation:

A —Az"l‘a ~C 2 _(atb)A+ab—c? =0

-Cc A-Db

As afunction in A, this quadratic polynomial function has a
nonnegative discriminant as follows

(a+b)? —4(1)(ab-c?) =a* + 2ab+b* —4ab+ 4c”
—a’—2ab+b”+4c?
= (a—b)* + 4¢® > 0= red-number solutions
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(1) (a-b)?+4c? =0

— a=Db, c=0

0
A=|? Y1219 7 itsalf is adiagonal matrix
c b 0 a

»< Notethat in this case, A has one eigenvalue, a, whose multiplicity is 2,
and the two eigenvectors are linearly independent

(2) (a-b)*+4c®>0

The characteristic polynomial of A hastwo distinct real roots,
which impliesthat A has two distinct real eigenvalues.
According to Thm. 6, A isdiagonalizable

7.38



= Orthogonal matrix :
A sguare matrix P is called orthogonal if it isinvertible and

Pt=P (or PP" =P P=1)

= Thm. 8: Properties of orthogonal matrices

An nxn matrix P isorthogonal if and only if its column vectors
form an orthonormal set

Pf: Suppose the column vectors of P form an orthonormal set, i.e.,
P=[p, p, - p,], wherep, -p, =0fori= jandp,-p, =1
PPy PP, o PP | [PiPr PPt PP

op_| PP P2Py o Py Py|_|P2Py PaPy o PoPy

_pnTpl pnsz pnTpn_ | PnPr PrP2 0 PrPa_

It impliesthat P-* = PT and thus P is orthogonal 7.39



« Ex 5: Show that P is an orthogonal matrix.

1 2 2
3 3 3
—| =2 L
P= = X 0
2 -4 5
| 3/5 3J5 35

Sol: If Pisaorthogonal matrix, then P1=P" — PP' =|

1 2 =2 - .
i 5 3|3 B s (100
T _| = 1 2 1 -4 | — —
PP — % % O 3 % 345 — O 1 O —I
2 4 5|2 (g 5 0 01
35 35 3|3 <N =

7.40



1 2| [ 2 ]
3 3 3

Moreover, let p, = _Tg , P, = % ,andp,=| 0 |,
=2 4 ==

| 345 | 35 |35 _

wecan producep, -p, =p, P, =P, P, =0andp,-p, =
p2°p2:p3'p3:1

So, {p;, P,, Ps} Isan orthonormal set.

7.41



= Thm. 9: Properties of symmetric matrices

Let A be an nxn “symmetric” matrix. If 4, and 4, are distinct

eigenvalues of A, then their corresponding eigenvectors x, and X,
are orthogonal.

Pf:
21(X1°X2) — (21X1)'X2 = (Axl) Xy = (Axl)T X, = (XI AT)Xz

because A is symmetric T T T
— (Xl A)Xz =X (sz) =X (ﬂzxz) =Xy (/’lzxz) = ﬂz(xl 'Xz)
The above equation implies (4, — 4,)(X, - X,) = 0, and because
A # A,, Itfollowsthat x, - x, =0. S0, X, and x,, are orthogonal

>< For distinct eigenvalues of a symmetric matrix, their corresponding
eigenvectors are orthogonal and thus linearly independent to each other

»< Note that there may be multiple x,’s and x,’s corresponding to 4, and 4,

1.42



= Orthogonal diagonalization :

A matrix A isorthogonally diagonalizableif there exists an
orthogonal matrix P such that PtAP = D is diagonal

= Thm. 10: Fundamental theorem of symmetric matrices

An nxn matrix A is orthogonally diagonalizable and has real
eigenvaluesif and only if Aissymmetric

Pf:

(=)
A is orthogonally diagonalizable
= D =P AP isdiagonal, and P is an orthogonal matrix s.t. P =P’
— A=PDP*=PDP" = A" =(PDP")" =(P")'D'P" =PDP' = A

7.43



= Orthogonal diagonalization of a symmetric matrix:

Let A be an nxn symmetric matrix.
(1) Find all eigenvalues of A and determine the multiplicity of each
> According to Thm. 9, eigenvectors corresponding to distinct eigenvalues are
orthognoal
(2) For each eigenvalue of multiplicity 1, choose the unit eigenvector
(3) For each elgenvalue of the multiplicity to bek > 2, find a set of k
linearly independent eigenvectors. If thisset {v,, v,, ..., V,} IShot
orthonormal, apply the Gram-Schmidt orthonormalization process
It is known that G.-S. processisakind of linear transformation, i.e., the
produced vectors can be expressed asc,v, +C,V, +---+ ¢V, (see Slide 5.55),
I. Since Av, = Av,, Av, = AV,,..., AV, = Av,,
= A(cVv,+CV, +---+CV,)=A(CV,+C,V, +--+CV,)
— The produced vectors through the G.-S. process are still eigenvectorsfor A
Il. Sincev,, Vv,,--, Vv, areorthogonal to eigenvectors corresponding to other
different eigenvalues (according to Thm. 7.9), cv, +C,v, +---+C.V, isaso
orthogonal to eigenvectors corresponding to other different eigenvalues.

7.44



(4) The composite of steps (2) and (3) produces an orthonormal set of
n eigenvectors. Use these orthonormal and thus linearly
Independent elgenvectors as column vectors to form the matrix P.

I. According to Thm. 8, the matrix P is orthogonal
li. Following the diagonalization process, D = PAP isdiagona
Therefore, the matrix A is orthogonally diagonalizable

7.45



N

R, O P
PR

Symmetric
matrix

O

X
X
O

Orthogonally

diagonalizable

O

X
X
O

= EX 7: Determining whether a matrix is orthogonally diagonalizable
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« EX 9: Orthogonal diagonalization
Find an orthogonal matrix P that diagonalizes A

2 2 2]
A=| 2 -1 4
2 4 -1

Sol:
(1) \/II —N =(1-3)%(1+6)=0

A, =—6, 1, =3 (hasamultiplicity of 2)
(D) L=6v,=(L -2 2) = u=—1=( 2 2

A
1

d 4=3v,=(2 1 0), v,=(-2 4, 5)
~_

orthogonal
7.47
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Rolle’s Theorem and the Mean

ue Theorem
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Rolle’s Theorem

N

If you connect from f (a) to
f (b) with a smooth curve,

there will be at least one
place where r’(c) = 0

f(a)=f(b)




N

Rolle’s Theorem

Rolle's theorem is an important
basic result about differentiable
functions. Like many basic
results in the calculus it seems

very obvious. It just says that
between any two points where
the graph of the differentiable
function f (x) cuts the horizontal
line there must be a point where
f (x) = 0. The following picture
illustrates the theorem.

f Relative
maximum
hi

(a) f is continuous on [a, b] and differentiable
on (a, b).

Relative
maximum

=

a c b

(b) f is continuous on [a, b].




Rolle’s Theorem

A
\J

If two points at the same NEIGNT  are

connected by a continuous,
differentiable function, then there has
to be _at least one place between those
two points where the derivative, or

slope, is ZEIO .




Rolle’s Theorem

N

If 1) r(x) is continuous on [a, b],
2) r(x) is differentiable on (a, b), and

3) 1(a) =1(b)

then there is at least one value of x on (a, b),
call it ¢, such that t . .
f fis continuous on [a, b]
differentiable on (a, b)

f’(c) = 0.
-— --%‘ =~ f(a) = 1(b)




N

Example

Example 1 f (X) = X* —2x% on[-2 2]
( f is continuous and differentiable)

f(-2=8=1(2)

Since ' , then Rolle’s Theorem applies...
f'(X)= 4x°—4x=4x(x*-1) =0

then, X:—l, x=0, and x=1




Rolle’s Theorem

N

Does Rolle’s Theorem apply?

If not, why not?

If so, find the value of .

Example2 f(X)=4—X°

[_2’ 2]




N

Rolle’s Theorem

Does Rolle’s Theorem apply?

If not, why not?

If so, find the value of .

Example3 f(X)=Xx3—X

-1, 1




Example

N

X, X>0
—X, Xx<0

Example 4

f (%) =|x|:{ on[-1,1]

(Graph the function over the interval on your calculator)

continuous on [-1, 1]
< not differentiable at 0
not differentiable on (-1, 1)

f(-1) =1 =1(1)

Rolle’s Theorem Does NOT apply since




Rolle’s Theorem

N

Does Rolle’s Theorem apply?

If not, why not?

If so, find the value of .

2
X" +4
Example 5 T (X)= ”

[_2’ 2]




Note

N

L/

When wotking with Rolle’s make sure you

1. State f(x) is continuous on [a, b] and differentiable
on (a, b).

2. Show that f(a) = f(b).

3. State that there exists at least one x = ¢ in (a, b)
such that r’(¢) = 0.

This theorem only guarantees the existence of an
extrema in an open interval. It does not tell you
how to find them or how many to expect. If YOU
can not find such extrema, it does not mean that it
can not be found. In most of cases, it is enough to

know the existence of such extrema.




Mean Value Theorem- MVT

The Mean Value Theorem is one of the most important
theoretical tools in Calculus. It states that if f(x) is defined

D

D : . : .
and continuous on the interval [a,b] and differentiable on

(a,b), then there is at least one number ¢ in the interval (a,b)
(that is a<c<b) such that
o fO-f@)

b-a
In other words, there exists a point in the interval (a,6) which
has a horizontal tangent. In fact, the Mean Value Theorem

can be stated also in terms of slopes. Indeed, the number
f(b)— f(a)
b-a
is the slope of the line passing through (a, f(a)) and (b, f(b)). So
the conclusion of the Mean Value Theorem states that there
exists a point such that the tangent line is parallel to the line
passing through (a, f(a)) and (b, f(b)).




(see Picture)

N
\J

————rd ey =

The special case, when f(a) = f(b) is known as Rolle's Theorem.
In this case, we have f'(¢) =0.




N

Mean Value Theorem- MV'T

A

) If: ris continuous on [a, b],
differentiable on (a, b)
| — Then: there is a cin (a, b) such
2 b that
foofO-1@

b—a




Example

N

Example 6

(f is continuous and differentiable)

f(X)=x>—x>—2x on[-1,1]

T~

f'(x)=3x"—2x—2 MVT applies

f'(c)=

-2-0

1-(-1)

A’-2c-2=-1
(3c+1)(c-1) =0

1
c=—-,
3

c=1




Mean Value Theorem- MV'T

N

Note:

f'(x)>0on(a,b) =

J f 1sincreasng on (a,b)

The graph of f is rising

~~




Mean Value Theorem- MV'T

N

Note:

f'(X)<O0on(a,b) =

‘\ f Isdecreasing on (a,b)

] g )b j The graph of f is falling




Mean Value Theorem- MV'T

N

Note:

f 1scongtant on (a,b)

The graph of f is level

8 N
oYY




Example

N

Example 7 f(X) = X° —6X+12
f'(X)=2x—-6
=2(X—3)

=0Iff Xx=3




Finding a Tangent Line

N

%
Example 8 Find all values of ¢ in the open interval (a,

b) such that f(b)— f(a)
b-a

f'(c)=

f(x):X_J“l, 1 9]
X

f(Q-fW2) _3/2-3__, \

2—-1/2 3/2

d 1 1
Fr )= —|14=|=——
) dx( xj X
fr(0)=— = =1
C

c=1



Application of MVT

N

Example 9 When an object is removed from a furnace
and placed in an environment with a constant
temperature of 90° F, its core temperature is 1500° F. Five
hours later the core temperature is 390° F. Explain why
there must exist a time in the interval when the
temperature is decreasing at a rate of 222° F per hour.

Solution
Let g(t) be the temperature of the object.

Then ¢(0) = 1500, ¢(5) = 390

Avg. Temp. = 9(5!)3_ 8(0) = 390_51500 =222

By MVT, there exists a time 0 <t, <5, such that ¢’ (1)) = —222°F




N

Application of MVT

Two stationary patrol cars equipped with radar are 5 miles apart
on a highway. As a truck passes the first patrol car, its speed is
clocked at 55 mph. Four minutes later, when the truck passes
the second patrol car, its speed is clocked at 50 mph. Prove
that the truck must have exceeded the speed limit of 55 mph at

some time during the 4 minutes.




[ Cauchy’s Mean Value Theorem

Let the functions f(x) and g(x) be continuous on an
interval [a, b], differentiable on (a, b), and ¢'(x)70 for

all x€(a, b). Then there is a point x=c in this interval
such that

[£(B)— @]/ [g(b)—g@)] = £(c)/£'(©).

/4
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Geometric meaning

Suppose that a curve y is described by the parametric equations

x=f(t), y=g(t), where the parameter t ranges in the interval [a,b].

When changing the parameter t, the point of the curve in Figure
given below runs from A(f(a),g(a)) to B(f(b),g(b)). According to
the theorem, there is a point (f(c),g(c)) on the curve y where the
tangent is parallel to the chord joining the ends A and B of the
curve.

/4
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DEFINITE INTEGRALS



TECHNIQUES OF INTEGRATION
In defining a definite integral_"b f(x)dx .

a
we dealt with a function f defined on a finite
interval [a, b] and we assumed that f does
not have an infinite discontinuity



Improper Integrals

In this section, we will learn:
How to solve definite integrals

where the interval is infinite and
where the function has an infinite discontinuity.



IMPROPER INTEGRALS
In this section, we extend the concept

of a definite integral to the cases where:

= The interval Is Iinfinite

* f has an infinite discontinuity in [a, b]



IMPROPER INTEGRALS
In either case, the integral is called

an improper integral.



TYPE 1—INFINITE INTERVALS
Consider the infinite region S that lies:

= Under the curve y = 1/x?
= Above the x-axis

* Totheright of the line x =1



INFINITE INTERVALS
You might think that, since S is Infinite

INn extent, Its area must be infinite.

= However, let’s take a closer look.



INFINITE INTERVALS

The area of the part of S that lies to the left
of the line x =t (shaded) Is:

= Notice that

1

t 1
A(t)z_[lgdx:—; ~1-

A(t)<1no
matter how
large t is
chosen.

0




INFINITE INTERVALS
We also observe that:

limA(t):!im(l—:t—szl



INFINITE INTERVALS

The area of the shaded region approaches
last— w.

arca =

o

- Y




INFINITE INTERVALS
So, we say that the area of the Infinite

region S is equal to 1 and we write:

—de:lim 2dx:l

1X t—>oolX

[ Loxetim(



INFINITE INTERVALS
Using this example as a guide, we define
the integral of f (not necessarily a positive
function) over an infinite interval as the limit
of integrals over finite intervals.



IMPROPER INTEGRAL OF TYPE 1  Definition 1 a
t "

If j f (X) dx exists for every number t = a,
a

then

j f(x)dx=lim f(x)dx

t—w

provided this limit exists (as a finite number).



IMPROPER INTEGRAL OF TYPE 1  Definition 1 b
b .

If j f (X) dx exists for every number t < a,
t

then

[* £ dx=lim | f (x)x

>

provided this limit exists (as a finite number).



CONVERGENT AND DIVERGENT  Definition 1 b

The improper integrals ro f (x)dx and
b a

[” f(dx are called:

= Convergent if the corresponding limit exists.

= Divergent if the limit does not exist.



IMPROPER INTEGRAL OF TYPE 1 Definition 1 c

If both j f (x)dx and j f (x)dx are

convergent, then we define:

[ feadx=[" foyax+[  f(xax

= Here, any real number a can be used.



IMPROPER INTEGRALS OF TYPE 1
Any of the improper integrals

In Definition 1 can be interpreted
as an area provided f Is a positive
function.



IMPROPER INTEGRALS OF TYPE 1

For instance, in case (a), suppose f(x) = 0

and the integral joo f (X) dx is convergent.
a

* Then, we define the area of the region
S={(x,y) | x=a, 0=sy<=<f{(x)}Iin the figure as:

A(S) = j“’ f () dx

§] a X
G Thomaon Hohes Eouesion




IMPROPER INTEGRALS OF TYPE 1

This is appropriate because I: f (X) dx
s the limit as t — oo of the area under
the graph of f from a to t.

VA

() a

G Thomaoe Hohes Eoues ion




IMPROPER INTEGRALS OF TYPE 1 Example 1
Determine whether the integral

j:’ (1/ X) dx

IS convergent or divergent.



IMPROPER INTEGRALS OF TYPE 1 Example 1
According to Definition 1 a,

we have:
[ dx=lim['~dx=limin|x |
1

1 X t—ooo J1 X t—o

=lim(Int —-Inl)

[ =Yoo

=limlnt =

o0

= The limit does not exist as a finite number.
» S0, the integral is divergent.



IMPROPER INTEGRALS OF TYPE 1
Let's compare the result of Example 1 with
the example at the beginning of the section:

o0 1 00 1 .
L -z dx converges L ” dx diverges

= Geometrically, this means the following.



IMPROPER INTEGRALS OF TYPE 1
The curvesy = 1/x? and y = 1/x look very
similar for x > 0.

However, the region under y = 1/x? to the right
of X = 1 has finite area, but the corresponding
region under y = 1/x has infinite area.

VoA

| l ]
\ Y= \_\' =
\ . -r_ |
g infinite area
finite areca
ey >
X A




IMPROPER INTEGRALS OF TYPE 1
Note that both 1/x? and 1/x approach 0 as

X — oo, but 1/x? approaches faster than 1/x.

= The values of 1/x don’t decrease fast enough
for its integral to have a finite value.

VA yA

infinite area




IMPROPER INTE%RALS OF TYPE 1 Example 2
Evaluate j xe" dx

= Using Definition 1 b,
we have: 0 . 0
j xe"dx=1lim| xe"dx

t—>—o0 J1



IMPROPER INTEGRALS OF TYPE 1 Example 2

= We Integrate by parts with u = Xx,
dv = eXdx so that du = dx, v = eX:

0 « XO OX
L Xe" dx = xe l—_[t e” dx

=—t€ —1+¢€



IMPROPER INTEGRALS OF TYPE 1 Example 2

= We know that et - 0 as t — -oo,
and, by I'Hospital’s Rule,
we have: i
Iimte = lim—

t——o0 to>—0 @ !

. 1
= |Im
t—>—o0 _e_

t

— lim(-¢")

t—>—0

=0



IMPROPER INTEGRALS OF TYPE 1 Example 2

= Therefore,

[* xe*dx=lim(-te' ~1+¢€)

t—>—o0
=—0-1+0
=1




IMPROPER INTEGRALS OF TYPE 1 Example 3

Evaluate [~ _* dx

0 14+ X

= |[t's convenient to choose a = 0 in Definition 1 c:

_‘m i dx = y dx+j

> dx
o] 4+ X —0 ] 4+ X*

1+ X°



IMPROPER INTEGRALS OF TYPE 1 Example 3
We must now evaluate the integrals

on the right side separately—as
follows.



IMPROPER INTEGRALS OF TYPE 1 Example 3

=lim(tan"t —tan" 0)

t—o0

= limtan*t

t—o0

o 1
Lo 1+ X° ™

. 0 dx
= |lim -
to—0 Jt 1_|_X

0
= limtan™ XJ
t——o0 t

= lim(tan™0—tan"t)

t—>—o0

o5

~
2




IMPROPER INTEGRALS OF TYPE 1 Example 3
Since both these integrals are convergent,

the given integral is convergent and

Jm - dX:Z: T

JC
—0 ]+ X2 2




IMPROPER INTEGRALS OF TYPE 1 Example 3
As 1/(1 + x2) > 0, the given improper integral
can be interpreted as the area of the infinite

region that lies under the curve y = 1/(1 + x?)
and above the x—axis.

1 Y4

>

0 X




IMPROPER INTEGRALS OF TYPE 1 Example 4
For what values of p is the integral

ro 1 dx convergent?
1 P

= We know from Example 1 that, if p = 1,
the integral Is divergent.

»= SO0, let's assume that p # 1.



IMPROPER INTEGRALS OF TYPE 1 Example 4
Then,

jwidxﬂim "% P dx
1 P

t—oowo J1

— X=t
Cox P
=lim
t—>o0 p_|_1_

x=1

=lIm 1 {1 1
t—o0 1_ p _tp




IMPROPER INTEGRALS OF TYPE 1 Example 4

fp>1,thenp-1>0.

So ast— o t"" — wand 1/t " - 0.

= Therefore, J‘looide:i it p>1
X

p-—1

= S0, the integral converges.



IMPROPER INTEGRALS OF TYPE 1 Example 4
However, iIf p <1, thenp -1 <0.

1
S0, tp—_lztl_p—)OO S>>

* Thus, the integral diverges.



IMPROPER INTEGRALS OF TYPE 1 Definition 2
We summarize the result of Example 4
for future reference:

LOO X—lp dx is:

= Convergentifp>1

= Divergentifps<1



TYPE 2—DISCONTINUOUS INTEGRANDS
Suppose f Is a positive continuous

function defined on a finite interval [a, b)
but has a vertical asymptote at b.



DISCONTINUOUS INTEGRANDS
Let S be the unbounded region under

the graph of f and above the x-axis
between a and b.

= For Type 1 integrals, the regions extended
iIndefinitely in a horizontal direction.

= Here, the region is infinite in a vertical direction.



DISCONTINUOUS INTEGRANDS
The area of the part of S between a and t

(shaded region) is:

A(t) = jt f (x) dx




DISCONTINUOUS INTEGRANDS
If it happens that A(t) approaches a definite
number A ast — b, then we say that the area

of the region S Is A and we write:

j f (x)dx = lim f(x)dx

t—>b



DISCONTINUOUS INTEGRANDS
We use the equation to define an improper
iIntegral of Type 2 even when f Is not a positive
function—no matter what type of discontinuity
f has at b.



IMPROPER INTEGRAL OF TYPE 2 Definition 3 a
If f IS continuous on [a, b) and is discontinuous

at b, then

j f(x)dx = lim f(x)dx

t—ob

If this limit exists (as a finite number).



IMPROPER INTEGRAL OF TYPE 2 Definition 3 b
If f IS continuous on (a, b] and is discontinuous

at a, then

[Cfoydx=lim [ f(x)dx

tsa’

If this limit exists (as a finite number).



IMPROPER INTEGRAL OF TYPE 2 Definition 3 b
Definition 3 b iIs illustrated for the case

where f(x) 2 0 and has vertical asymptotes

at a and c, respectively.

a i

b




IMPROPER INTEGRAL OF TYPE 2 Definition 3 b
: i b
The improper mtegralj f (x)dx
a
Is called.:

= Convergent if the corresponding limit exists.

= Divergent if the limit does not exist.



IMPROPER INTEGRAL OF TYPE 2 Definition 3 ¢
If f has a discontinuity at ¢, where a < c <D,

and both IC f (x) dx and jb f (xX)dx are
convergent, then we define:

[Cf o= f o+ [ f(x)ax



IMPROPER INTEGRAL OF TYPE 2 Definition 3 ¢
Definition 3 c is illustrated for the case
where f(x) 2 0 and has vertical asymptotes
at a and c, respectively.

0| a ¢




IMPROPER INTEGRALS OF TYPE 2 Example 5
: 5 1
Find 0)%4
2 Jx-2

= First, we note that the given integral is improper

because f (x) =1/ Jx— 2 has the vertical asymptote
X = 2.



IMPROPER INTEGRALS OF TYPE 2 Example 5

* The infinite discontinuity occurs at the left end-point
of [2, 5].
= S0, wWe use Definition 3 b:

= lim

dx
j \/f t—>2" \/f
= lim 2y x— ]

t—>2"

=lim2(\/3 -+t -2)

t—>2"
=23

* Thus, the given improper integral is convergent.




IMPROPER INTEGRALS OF TYPE 2 Example 5

» Since the integrand Is positive,
we can interpret the value of the integral
as the area of the shaded region here.

YA

R s e




IMPROPER INTEGRALS OF TYPE 2 Example 6
: /2
Determine whether j SC X dx
0]

converges or diverges.

* Note that the given integral is improper

because: lim SecX = oo

x—(712)



IMPROPER INTEGRALS OF TYPE 2 Example 6

» Using Definition 2 a, we have:

zl2

_ t
secxdx= I|im sec X dx
0 x—>(7/2)” 90

{

= |lim In\secx+tanx@
X—>(7/2)” 0

= lim [In(sect +tant) —Inl|= o

o F X—>(7/2)”
* This is because sect —-wandtant - o ast — (17/2).

* Thus, the given improper integral is divergent.



IMPROPER INTEGRALS OF TYPE 2 Example 7

Evaluate IB dX_ if possible.
0 x-1

= Observe that the line x = 1 Is a vertical asymptote
of the integrand.



IMPROPER INTEGRALS OF TYPE 2 Example 7

= As it occurs in the middle of the interval [0, 3],
we must use Definition 3 ¢ with ¢ = 1:
3 dx 1 dx 3 dXx

= - -
0x—1 Jox-—-1 9J1x-1

where
1 dXx . et dXx . t
" —|im —:Ilm\x—ﬂ
Ox—1 t5190x—-1 to1 0

=!irp(ln\t—ﬂ—ln\—ﬂ)

=limIn(1-t) = —oo

to1

= Thisisbecausel -t—0*ast— 1-.



IMPROPER INTEGRALS OF TYPE 2 Example 7
1 : .

Thus, I dx/(x—1) is divergent.
0

This implies that jjdx/(x—l) Is divergent.

3
= We do not need to evaluatej dx/(x—1).
1






WARNING
Then, we might
erroneous calcu

nave made the following

ation:

X

3 dx :
RS
N n|x ]UO

n2—Inl
n2

= This is wrong because the integral is improper
and must be calculated in terms of limits.



WARNING
From now, whenever you meet the symbol

jb f (X) dx, you must decide, by looking at
the function f on [a, b], whether it Is either:

= An ordinary definite integral

= An improper integral



IMPROPER INTEGRALS OF TYPE 2 Example 8
1

Evaluate _[ In X dx
0]

= We know that the function f(x) = In x has
a vertical asymptote at O since limInx=—ox.

Xx—0"

* Thus, the given integral is improper,
and we have:

_ 1
j Inxdx = lim [ Inxdx
0 t—0" Ji



IMPROPER INTEGRALS OF TYPE 2 Example 8

= Now, we integrate by parts with u = In X,
dv = dx, du = dx/x, and v = X:

1 1 1
L In xdx = xIn x]t —L dx

=1ln1-tint—(1-1)
=—tInt—1+t



IMPROPER INTEGRALS OF TYPE 2 Example 8

= To find the limit of the first term,
we use |I'Hospital’'s Rule:

imtint = lim-.
t—0" t—>0" 1/t

.1/t
=|im

t—>0" —:]_/'[2
= [Im(-t)

=0

=1




IMPROPER INTEGRALS OF TYPE 2 Example 8

= Therefore,

[.Inxdx=lim(~tInt-1+1)

t—>0"
=—-0-1+0
=—1



IMPROPER INTEGRALS OF TYPE 2 Example 8
The geometric interpretation

of the result Is shown.

= The area of the shaded
region above y = In X
and below the x-axis is 1.




A COMPARISON TEST FOR IMPROPER INTEGRALS
Sometimes, it Is Impossible to find the exact
value of an improper integral and yet it Is
important to know whether it Is convergent

or divergent.

* |n such cases, the following theorem is useful.

= Although we state it for Type 1 integrals,
a similar theorem is true for Type 2 integrals.



COMPARISON THEOREM
Suppose f and g are continuous functions
with f(x) =2 g(x) = 0 for x = a.

a. If j: f (X) dX is convergent, then ro g(x) dx
IS convergent. )

b. 1f |, 9() A is divergent, then [ f (x)dx
IS divergent.



COMPARISON THEOREM
We omit the proof of the theorem.

However, the figure makes it seem

plausible.




COMPARISON THEOREM
If the area under the top curve y = f(x)
IS finite, so IS the area under the bottom

curve y = g(x).




COMPARISON THEOREM
If the area under y = g(x) Is infinite,

So IS the area under y = f(X).




COMPARISON THEOREM
Note that the reverse Is not necessarily

true:

- Ifja g(x) dX is convergent, ro f (X) dx may
or may not be convergent. °°

= |f Ia f (X) dX is divergent, Ioo g(Xx) dx may
or may not be divergent. “°



COMPARISON THEOREM Example 9
Show that j e ¥ dx is convergent.
0]

= We can’t evaluate the integral directly.

= The antiderivative of e** is not an elementary function
(as explained in Section 7.5).



COMPARISON THEOREM Example 9
We write:

00 2 1 2 00 2
jo e dx= jo e~ dx+_[1 e " dx

= We observe that the first integral on the right-hand side
IS just an ordinary definite integral.



COMPARISON THEOREM Example 9

* |n the second integral, we use the fact that,
for x = 1, we have x2 = x.

= S0, —x2 < -x and, therefore, e** < e,




COMPARISON THEOREM Example 9
The integral of e* is easy to evaluate:

00 ) t
L e “dx=Ilim| e “dx

t—oo J1

=lim(e*-¢e")

t—oo

— e_l



COMPARISON THEOREM Example 9
Thus, taking f(x) = e* and g(x) = e**
In the theorem, we see that jooe‘xz dx
IS convergent. :

o0 2
= |t follows thatj e * dx is convergent.
0



COMPARISON THEOREM
In Example 9, we showed thatjwe‘xzdx
0
IS convergent without computing its value.

= |n Exercise 70, we indicate how to show
that its value is approximately 0.8862

* |n probability theory, it is important to know
the exact value of this improper integral.

» Using the methods of multivariable calculus,
It can be shown that the exact value is\/;/ 2.



COMPARISON THEOREM
The table illustrates the definition of

an improper integral by showing how

t 2
the (computer- generated) values of jo e dx

approach J7 12 as t becomes large.

TABLE |
= |n fact, these values ! oo dx

converge quite quickly B 07468241308

because e — 0 very 2 0.8820813908

rapidly as x — oo. 3 0.8862073483

4 ().8862269118

5 0.8862269255

6 (0.8862269255




COMPARISON THEOREM Example 10

The Integral jw1+ e~ dx IS divergent by

1 X
— X
the Comparison Theorem since 1+e > E

X X

LOO (1/ X) dX is divergent by Example 1 or
by Definition 2 with p = 1.



COMPARISON THEOREM
The table illustrates the divergence of

the integral in Example 10.

* |t appears the values IABLE |

are not approaching f | e “ dx
any fixed number. —

I 0.746824 1328
2 0.8820813908
3 0.8862073483
-4 0.8862269118
S 0.8862269255

0 0.8862269255




