
Artificial Neural Networks
- Introduction -

Overview

1. Biological inspiration

2. Artificial neurons and neural networks

3. Application

Biological Neuron

Animals are able to react adaptively to changes in their
external and internal environment, and they use their nervous
system to perform these behaviours.

An appropriate model/simulation of the nervous system
should be able to produce similar responses and behaviours in
artificial systems.

Biological Neuron

The information transmission happens at the synapses.

Artificial neurons Neuron

Artificial neurons

one possible model

Inputs

Outputw2

w1

w3

wn

wn-1

. . .

x1

x2

x3

…

xn-1

xn

y
)(;

1

zHyxwz
n

i
ii 



Artificial neurons

Nonlinear generalization of neuron:

),(wxfy 

y is the neuron’s output, x is the vector of inputs, and w
is the vector of synaptic weights.

Examples:

2

2

2

||||

1

1

a

wx

axw

ey

e
y T









 sigmoidal neuron

Gaussian neuron

Other Model

Hopfield Retropropagation

From Logical Neurons to Finite Automata

AND

1

1

1.5

NOT

-1
0

OR

1

1

0.5

Artificial neural networks

Inputs

Output

An artificial neural network is composed of many artificial
neurons that are linked together according to a specific
network architecture. The objective of the neural network
is to transform the inputs into meaningful outputs.

Artificial neural networks

Tasks to be solved by artificial neural networks:

• controlling the movements of a robot based on self-
perception and other information (e.g., visual
information);

• deciding the category of potential food items (e.g.,
edible or non-edible) in an artificial world;

• recognizing a visual object (e.g., a familiar face);

• predicting where a moving object goes, when a robot
wants to catch it.

Neural network mathematics

Inputs

Output

),(

),(

),(

),(

1
44

1
4

1
33

1
3

1
22

1
2

1
11

1
1

wxfy

wxfy

wxfy

wxfy









),(

),(

),(

2
3

12
3

2
2

12
2

2
1

12
1

wyfy

wyfy

wyfy





























1
4

1
3

1
2

1
1

1

y

y

y

y

y),(3
1

2 wyfyOut 


















2
3

2
3

2
3

2

y

y

y

y

Neural network mathematics

Neural network: input / output transformation

),(WxFyout 

W is the matrix of all weight vectors.

Learning principle for
artificial neural networks

ENERGY MINIMIZATION

We need an appropriate definition of energy for artificial
neural networks, and having that we can use
mathematical optimisation techniques to find how to
change the weights of the synaptic connections between
neurons.

ENERGY = measure of task performance error

Perceptron application

022110  xcxcc

+ ++
+

+
+

+
+

+
+ + +

+
+ +

+

+
++

+
+

+

+
+

+
+

+ +
+

+
+

+

+

+

+

+

1y

1y

0c
1c 2c


1x

2x1

22110 xcxccv 

)(vsigny 

Multi-Layer Perceptron

• One or more hidden layers
• Sigmoid activations functions

1st hidden
layer

2nd hidden
layer

Output layer

Input data

Structure
Types of

Decision Regions
Result

Single-Layer

Two-Layer

Three-Layer

Half Plane
Bounded By
Hyperplane

Convex Open
Or

Closed Regions

Abitrary
(Complexity

Limited by No.
of Nodes)

A

AB

B

A

AB

B

A

AB

B

Multi-Layer Perceptron Application

Conclusion

NN have some desadvantages such as:

1. Preprocessing

2. Results interpretation by high dimension

3. Learning phase/Supervised/Non
Supervised

References

http://neuron.eng.wayne.edu/software.html

http://neuron.eng.wayne.edu/software.html

• Neural networks is a branch of "Artificial Intelligence". Artificial Neural Network is a
system loosely modeled based on the human brain. The field goes by many names, such as
connectionism, parallel distributed processing, neuro-computing, natural intelligent systems,
machine learning algorithms, and artificial neural networks.

A vague description is as follows:
• An ANN is a network of many very simple processors ("units"), each possibly having a (small

amount of) local memory.
• The units are connected by unidirectional communication channels ("connections"), which

carry numeric (as opposed to symbolic) data.
• The units operate only on their local data and on the inputs they receive via the connections.
• The design motivation is what distinguishes neural networks from other mathematical

techniques
• A neural network is a processing device, either an algorithm, or actual hardware, whose design

was motivated by the design and functioning of human brains and components thereof.
• Most neural networks have some sort of "training" rule whereby the weights of connections

are adjusted on the basis of presented patterns.
• In other words, neural networks "learn" from examples, just like children learn to recognize

dogs from examples of dogs, and exhibit some structural capability for generalization.
• Neural networks normally have great potential for parallelism, since the computations of the

components are independent of each other.

 What is a neural network (NN)?

 Introduction

• Biological neural networks are much more complicated in their elementary structures
than the mathematical models we use for ANNs.

• It is an inherently multiprocessor-friendly architecture and without much modification,
it goes beyond one or even two processors of the von Neumann architecture. It has
ability to account for any functional dependency. The network discovers (learns,
models) the nature of the dependency without needing to be prompted.

• Neural networks are a powerful technique to solve many real world problems.
They have the ability to learn from experience in order to improve their
performance and to adapt themselves to changes in the environment. In addition
to that they are able to deal with incomplete information or noisy data and can be
very effective especially in situations where it is not possible to define the rules or
steps that lead to the solution of a problem.

• They typically consist of many simple processing units, which are wired together in a
complex communication network.

 Introduction

• There is no central CPU following a logical sequence of rules - indeed there is no set of rules or
program. This structure then is close to the physical workings of the brain and leads to a new type

of computer that is rather good at a range of complex tasks.

• In principle, NNs can compute any computable function, i.e. they can do everything a normal
digital computer can do. Especially anything that can be represented as a mapping between vector

spaces can be approximated to arbitrary precision by Neural Networks.

• In practice, NNs are especially useful for mapping problems which are tolerant of some errors and
have lots of example data available, but to which hard and fast rules can not easily be applied.

• In a nutshell a Neural network can be considered as a black box that is able to predict an
output pattern when it recognizes a given input pattern. Once trained, the neural network is

able to recognize similarities when presented with a new input pattern, resulting in a
predicted output pattern.

The Brain

The Brain as an Information Processing
System

The human brain contains about 10 billion
nerve cells, or neurons. On average, each

neuron is connected to other neurons
through about 10 000 synapses. (The actual
figures vary greatly, depending on the local

neuroanatomy.)

• The brain's network of neurons forms a massively parallel information processing system.
This contrasts with conventional computers, in which a single processor executes a single
series of instructions.

• Against this, consider the time taken for each elementary operation: neurons typically operate
at a maximum rate of about 100 Hz, while a conventional CPU carries out several hundred
million machine level operations per second. Despite of being built with very slow hardware,
the brain has quite remarkable capabilities:

• Its performance tends to degrade gracefully under partial damage. In contrast, most programs
and engineered systems are brittle: if you remove some arbitrary parts, very likely the whole
will cease to function.

• It can learn (reorganize itself) from experience.
• This means that partial recovery from damage is possible if healthy units can learn to take

over the functions previously carried out by the damaged areas.
• It performs massively parallel computations extremely efficiently. For example, complex

visual perception occurs within less than 100 ms, that is, 10 processing steps!
• It supports our intelligence and self-awareness. (Nobody knows yet how this occurs.)
• As a discipline of Artificial Intelligence, Neural Networks attempt to bring computers a little

closer to the brain's capabilities by imitating certain aspects of information processing in the
brain, in a highly simplified way.

Computation in the brain

• The brain is not homogeneous. At
the largest anatomical scale, we
distinguish cortex, midbrain,
brainstem, and cerebellum. Each
of these can be hierarchically
subdivided into many regions, and
areas within each region, either
according to the anatomical
structure of the neural networks
within it, or according to the
function performed by them.

Neural Networks in the Brain

• The overall pattern of projections (bundles of neural connections) between areas is extremely
complex, and only partially known. The best mapped (and largest) system in the human brain is the

visual system, where the first 10 or 11 processing stages have been identified. We distinguish
feedforward projections that go from earlier processing stages (near the sensory input) to later ones

(near the motor output), from feedback connections that go in the opposite direction.

• In addition to these long-range connections, neurons also link up with many thousands of their
neighbours. In this way they form very dense, complex local networks

Neurons and Synapses

• The basic computational unit in the
nervous system is the nerve cell, or

neuron. A neuron has:

• Dendrites (inputs)
• Cell body

• Axon (output)

• A neuron receives input from other neurons (typically many thousands). Inputs sum (approximately).
Once input exceeds a critical level, the neuron discharges a spike - an electrical pulse that travels

from the body, down the axon, to the next neuron(s) (or other receptors). This spiking event is also
called depolarization, and is followed by a refractory period, during which the neuron is unable to

fire.

• The axon endings (Output Zone) almost touch the dendrites or cell body of the next neuron.
Transmission of an electrical signal from one neuron to the next is effected by neurotransmittors,

chemicals which are released from the first neuron and which bind to receptors in the second. This
link is called a synapse. The extent to which the signal from one neuron is passed on to the next

depends on many factors, e.g. the amount of neurotransmittor available, the number and arrangement
of receptors, amount of neurotransmittor reabsorbed, etc.

• Computational neurobiologists have constructed very elaborate computer models of
neurons in order to run detailed simulations of particular circuits in the brain. As
Computer Scientists, we are more interested in the general properties of neural
networks, independent of how they are actually "implemented" in the brain. This
means that we can use much simpler, abstract "neurons", which (hopefully) capture
the essence of neural computation even if they leave out much of the details of how
biological neurons work.

• People have implemented model neurons in hardware as electronic circuits, often
integrated on VLSI chips. Remember though that computers run much faster than
brains - we can therefore run fairly large networks of simple model neurons as
software simulations in reasonable time. This has obvious advantages over having
to use special "neural" computer hardware.

Artificial Neuron Models

A Simple Artificial Neuron

• The basic computational element (model neuron) is often called a node or unit. It receives input
from some other units, or perhaps from an external source. Each input has an associated weight w,
which can be modified so as to model synaptic learning. The unit computes some function f of the

weighted sum of its inputs

• Its output, in turn, can serve as input to other units.

• The weighted sum is called the net input to unit i,
often written neti.

• Note that wij refers to the weight from unit j to unit i
(not the other way around).

• The function f is the unit's activation function. In the
simplest case, f is the identity function, and the unit's
output is just its net input. This is called a linear unit.

Neural Network Applications can be grouped in following categories:

• Clustering:
A clustering algorithm explores the similarity between patterns and places similar patterns in a cluster. Best
known applications include data compression and data mining.

• Classification/Pattern recognition:
The task of pattern recognition is to assign an input pattern (like handwritten symbol) to one of many
classes. This category includes algorithmic implementations such as associative memory.

• Function approximation:
The tasks of function approximation is to find an estimate of the unknown function f() subject to noise.
Various engineering and scientific disciplines require function approximation.

• Prediction/Dynamical Systems:
The task is to forecast some future values of a time-sequenced data. Prediction has a significant impact on
decision support systems. Prediction differs from Function approximation by considering time factor.
Here the system is dynamic and may produce different results for the same input data based on system
state (time).

Applications:

Neural Network types can be classified based on following attributes:

• Applications

-Classification
-Clustering

-Function approximation
-Prediction

• Connection Type

- Static (feedforward)
- Dynamic (feedback)
• Topology

- Single layer
- Multilayer
- Recurrent

- Self-organized

• Learning Methods

- Supervised
- Unsupervised

Types of Neural Networks

The McCulloch-Pitts Model of Neuron

• The early model of an artificial neuron is introduced by Warren McCulloch and Walter Pitts in
1943. The McCulloch-Pitts neural model is also known as linear threshold gate. It is a neuron
of a set of inputs I1,I2,I3…Im and one output y . The linear threshold gate simply classifies
the set of inputs into two different classes. Thus the output y is binary. Such a function can be
described mathematically using these equations:

• W1,W2…Wm are weight values normalized in the
range of either (0,1) or (-1,1) and associated with
each input line, Sum is the weighted sum, and T
is a threshold constant. The function f is a linear
step function at threshold T as shown in figure

The Perceptron

• In late 1950s, Frank Rosenblatt introduced a network composed of the units that were
enhanced version of McCulloch-Pitts Threshold Logic Unit (TLU) model. Rosenblatt's
model of neuron, a perceptron, was the result of merger between two concepts from the
1940s, McCulloch-Pitts model of an artificial neuron and Hebbian learning rule of
adjusting weights. In addition to the variable weight values, the perceptron model
added an extra input that represents bias. Thus, the modified equation is now as
follows:

where b represents the bias value.

 Figure :Symbolic Illustration of Linear Threshold Gate
• The McCulloch-Pitts model of a neuron is simple yet has substantial computing potential. It also has a precise

mathematical definition. However, this model is so simplistic that it only generates a binary output and also the
weight and threshold values are fixed. The neural computing algorithm has diverse features for various
applications . Thus, we need to obtain the neural model with more flexible computational features.

The McCulloch-Pitts Model of Neuron

Artificial Neuron with Continuous
Characteristics

• Based on the McCulloch-Pitts model described previously, the general form an artificial neuron
can be described in two stages shown in figure. In the first stage, the linear combination of inputs
is calculated. Each value of input array is associated with its weight value, which is normally
between 0 and 1. Also, the summation function often takes an extra input value Theta with weight
value of 1 to represent threshold or bias of a neuron. The summation function will be then
performed as

• The sum-of-product value is then passed into the second stage to perform the activation function
which generates the output from the neuron. The activation function ``squashes" the amplitude the

output in the range of [0,1] or [-1,1] alternately. The behavior of the activation function will
describe the characteristics of an artificial neuron model.

Artificial Neuron with Continuous
Characteristics

• The signals generated by actual biological neurons are the action-potential spikes, and the
biological neurons are sending the signal in patterns of spikes rather than simple absence or

presence of single spike pulse. For example, the signal could be a continuous stream of pulses with
various frequencies. With this kind of observation, we should consider a signal to be continuous

with bounded range. The linear threshold function should be ``softened".
• One convenient form of such ``semi-linear" function is the logistic sigmoid function, or in short,

sigmoid function as shown in figure. As the input x tends to large positive value, the output value
y approaches to 1. Similarly, the output gets close to 0 as x goes negative. However, the output

value is neither close to 0 nor 1 near the threshold point.

• This function is expressed
mathematically as follows:

• Additionally, the sigmoid function
describes the ``closeness" to the
threshold point by the slope. As x
approaches to

 - infinity or + infinity , the slope is
zero; the slope increases as x
approaches to 0. This characteristic
often plays an important role in
learning of neural networks.

Single-Layer Network

• By connecting multiple neurons, the true
computing power of the neural networks
comes, though even a single neuron can
perform substantial level of computation. The
most common structure of connecting
neurons into a network is by layers. The
simplest form of layered network is shown in
figure. The shaded nodes on the left are in the
so-called input layer. The input layer neurons
are to only pass and distribute the inputs and
perform no computation. Thus, the only true
layer of neurons is the one on the right. Each
of the inputs x1,x2,…xN is connected to
every artificial neuron in the output layer
through the connection weight. Since every
value of outputs y1,y2,…yN is calculated
from the same set of input values, each output
is varied based on the connection weights.
Although the presented network is fully
connected, the true biological neural network
may not have all possible connections - the
weight value of zero can be represented as
``no connection".

Multilayer Network

• To achieve higher level of computational
capabilities, a more complex structure of
neural network is required. Figure shows
the multilayer neural network which
distinguishes itself from the single-layer
network by having one or more hidden
layers. In this multilayer structure, the
input nodes pass the information to the
units in the first hidden layer, then the
outputs from the first hidden layer are
passed to the next layer, and so on.

• Multilayer network can be also viewed as
cascading of groups of single-layer
networks. The level of complexity in
computing can be seen by the fact that
many single-layer networks are combined
into this multilayer network. The designer
of an artificial neural network should
consider how many hidden layers are
required, depending on complexity in
desired computation.

 Backpropagation Networks

• Backpropagation networks, and multi layered perceptrons, in general, are feedforward
networks with distinct input, output, and hidden layers. The units function basically
like perceptrons, except that the transition (output) rule and the weight update
(learning) mechanism are more complex.

• The figure on next page presents the architecture of backpropagation networks. There
may be any number of hidden layers, and any number of hidden units in any given
hidden layer. Input and output units can be binary {0, 1}, bi-polar {-1, +1}, or may
have real values within a specific range such as [-1, 1]. Note that units within the same
layer are not interconnected.

 Backpropagation Networks

• In feedforward activation, units of hidden layer
1 compute their activation and output values and
pass these on to the next layer, and so on until
the output units will have produced the
network's actual response to the current input.
The activation value ak of unit k is computed as
follows.

• This is basically the same activation function of
linear threshold units (McCulloch and Pitts
model).

• As illustrated above, xi is the input signal
coming from unit i at the other end of the
incoming connection. wki is the weight of the
connection between unit k and unit i. Unlike in
the linear threshold unit, the output of a unit in a
backpropagation network is no longer based on
a threshold. The output yk of unit k is computed
as follows:

• The function f(x) is referred to as the output
function. It is a continuously increasing function
of the sigmoid type, asymptotically approaching
0 as x decreases, and asymptotically approaches
1 as x increases. At x = 0, f(x) is equal to 0.5.

 Backpropagation Networks

• In some implementations of the
backpropagation model, it is convenient to
have input and output values that are bi-polar.
In this case, the output function uses the
hypertangent function, which has basically
the same shape, but would be asymptotic to –
1 as x decreases. This function has value 0
when x is 0.

• Once activation is fed forward all the way to
the output units, the network’s response is
compared to the desired output ydi which
accompanies the training pattern. There are
two types of error. The first error is the error
at the output layer. This can be directly
computed as follows:

• The second type of error is the error at the
hidden layers. This cannot be computed
directly since there is no available
information on the desired outputs of the
hidden layers. This is where the
retropropagation of error is called for.

 Backpropagation Networks

• Essentially, the error at the output layer is used to compute for the error at the hidden layer
immediately preceding the output layer. Once this is computed, this is used in turn to compute for
the error of the next hidden layer immediately preceding the last hidden layer. This is done
sequentially until the error at the very first hidden layer is computed. The retropropagation of error
is illustrated in the figure below:

 Backpropagation Networks

• Computation of errors ei at a hidden layer is done as follows:

• The errors at the other end of the outgoing connections of the hidden unit h have been earlier
computed. These could be error values at the output layer or at a hidden layer. These error signals
are multiplied by their corresponding outgoing connection weights and the sum of these is taken.

Backpropagation Networks

• The errors at the other end of the outgoing connections of the hidden unit h
have been earlier computed. These could be error values at the output layer or
at a hidden layer. These error signals are multiplied by their corresponding
outgoing connection weights and the sum of these is taken.

 Backpropagation Networks

• After computing for the error for each unit, whether
it be at a hidden unit or at an output unit, the
network then fine-tunes its connection weights
wkjt+1. The weight update rule is uniform for all
connection weights.

• The learning rate a is typically a small value
between 0 and 1. It controls the size of weight
adjustments and has some bearing on the speed of
the learning process as well as on the precision by
which the network can possibly operate. f’(x) also
controls the size of weight adjustments, depending
on the actual output f(x). In the case of the sigmoid
function above, its first derivative (slope) f’(x) is
easily computed as follows:

 Backpropagation Networks

• We note that the change in weight is directly proportional to the error term computed for the unit at the
output end of the incoming connection. However, this weight change is controlled by the output signal

coming from the input end of the incoming connection. We can infer that very little weight change
(learning) occurs when this input signal is almost zero.

• The weight change is further controlled by the term f’(ak). Because this term measures the slope of the
function, and knowing the shape of the function, we can infer that there will likewise be little weight
change when the output of the unit at the other end of the connection is close to 0 or 1. Thus, learning

will take place mainly at those connections with high pre-synaptic signals and non-committed
(hovering around 0.5) post-synaptic signals.

• One of the most important aspects of Neural Network is the learning process. The
learning process of a Neural Network can be viewed as reshaping a sheet of metal,
which represents the output (range) of the function being mapped. The training set
(domain) acts as energy required to bend the sheet of metal such that it passes through
predefined points. However, the metal, by its nature, will resist such reshaping. So the
network will attempt to find a low energy configuration (i.e. a flat/non-wrinkled shape)
that satisfies the constraints (training data).

• Learning can be done in supervised or unsupervised training.

• In supervised training, both the inputs and the outputs are provided.
The network then processes the inputs and compares its resulting outputs against the
desired outputs. Errors are then calculated, causing the system to adjust the weights
which control the network. This process occurs over and over as the weights are
continually tweaked.

Learning Process

The following properties of nervous systems will be of particular interest in our neurally-inspired
models:

• In unsupervised training, the network is provided with inputs but not with desired outputs. The
system itself must then decide what features it will use to group the input data. This is often

referred to as self-organization or adaption.
• Following geometrical interpretations will demonstrate the learning process within different

Neural Models:
• Parallel, distributed information processing

• High degree of connectivity among basic units
• Connections are modifiable based on experience

• Learning is a constant process, and usually unsupervised
• Learning is based only on local information

• Performance degrades gracefully if some units are removed

References:

 http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node12.html

http://www.comp.nus.edu.sg/~pris/ArtificialNeuralNetworks/LinearThresholdUnit.html

 http://www.csse.uwa.edu.au/teaching/units/233.407/lectureNotes/Lect1-UWA.pdf

Summary

http://www.comp.nus.edu.sg/~pris/ArtificialNeuralNetworks/LinearThresholdUnit.html

Supervised and Unsupervised
Neural Networks

References

• http://www.ai.rug.nl/vakinformatie/ias/slides/3_N
euralNetworksAdaptation.pdf

• http://www.users.cs.york.ac.uk/~sok/IML/iml_nn_
arch.pdf

• http://ilab.usc.edu/classes/2005cs561/notes/Lea
rningInNeuralNetworks-CS561-3-05.pdf

http://www.ai.rug.nl/vakinformatie/ias/slides/3_NeuralNetworksAdaptation.pdf
http://www.ai.rug.nl/vakinformatie/ias/slides/3_NeuralNetworksAdaptation.pdf
http://www.users.cs.york.ac.uk/~sok/IML/iml_nn_arch.pdf
http://www.users.cs.york.ac.uk/~sok/IML/iml_nn_arch.pdf
http://ilab.usc.edu/classes/2005cs561/notes/LearningInNeuralNetworks-CS561-3-05.pdf
http://ilab.usc.edu/classes/2005cs561/notes/LearningInNeuralNetworks-CS561-3-05.pdf

Understanding Supervised and
Unsupervised Learning

A

BA

B A

B

Two possible Solutions…

A

B

A

B

A

B

A

B A

B

A

B

Supervised Learning

• It is based on a
labeled training set.

• The class of each
piece of data in
training set is
known.

• Class labels are
pre-determined and
provided in the
training phase.

A

B
A

B
A

B

 Class

 Class

 Class

 Class

 Class

 Class

Supervised Vs Unsupervised

• Task performed
Classification
Pattern

Recognition

• NN model :
Preceptron
Feed-forward NN

“What is the class
of this data
point?”

• Task performed
Clustering

• NN Model :
Self Organizing

Maps

“What groupings
exist in this
data?”

“How is each data
point related to
the data set as a
whole?”

Unsupervised Learning
• Input : set of patterns P, from n-dimensional space S, but

little/no information about their classification, evaluation,
interesting features, etc.
It must learn these by itself! :)

• Tasks:
– Clustering - Group patterns based on similarity
– Vector Quantization - Fully divide up S into a small set

of regions (defined by codebook vectors) that also
helps cluster P.

– Feature Extraction - Reduce dimensionality of S by
removing unimportant features (i.e. those that do not
help in clustering P)

Unsupervised Neural Networks –
Kohonen Learning

• Also defined – Self Organizing Map
• Learn a categorization of input space
• Neurons are connected into a 1-D or 2-D lattice.
• Each neuron represents a point in N-

dimensional pattern space, defined by N weights
• During training, the neurons move around to try

and fit to the data
• Changing the position of one neuron in data

space influences the positions of its neighbors
via the lattice connections

Self Organizing Map – Network
Structure

• All inputs are
connected by weights
to each neuron

• size of neighbourhood
 changes as net learns

• Aim is to map similar
inputs (sets of values)
to similar neuron
positions.

• Data is clustered
because it is mapped to
the same node or
group of nodes

SOM-Algorithm

1. Initialization :Weights are set to unique
random values

2. Sampling : Draw an input sample x and
present in to network

3. Similarity Matching : The winning neuron i
is the neuron with the weight vector that
best matches the input vector

i = argmin(j){ x – wj }

SOM - Algorithm
4. Updating : Adjust the weights of the winning

neuron so that they better match the input.
Also adjust the weights of the neighbouring
neurons.

 ∆wj = η . hij (x – wj)

neighbourhood function : hij

• over time neigbourhood function gets smaller

Result: The neurons provide a good approximation
of the input space and correspond

References

• http://ilab.usc.edu/classes/2005cs561/notes/LearningInNeuralNetwo
rks-CS561-3-05.pdf

http://ilab.usc.edu/classes/2005cs561/notes/LearningInNeuralNetworks-CS561-3-05.pdf
http://ilab.usc.edu/classes/2005cs561/notes/LearningInNeuralNetworks-CS561-3-05.pdf

	Slide 1
	Overview
	Biological Neuron
	Biological Neuron
	Artificial neurons Neuron
	Artificial neurons
	Artificial neurons
	Other Model
	From Logical Neurons to Finite Automata
	Artificial neural networks
	Artificial neural networks
	Neural network mathematics
	Neural network mathematics
	Learning principle for artificial neural networks
	Perceptron application
	Multi-Layer Perceptron
	Multi-Layer Perceptron Application
	Conclusion
	References
	What is a neural network (NN)?
	Introduction
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	The McCulloch-Pitts Model of Neuron
	The Perceptron
	The McCulloch-Pitts Model of Neuron
	Artificial Neuron with Continuous Characteristics
	Slide 35
	Slide 36
	Single-Layer Network
	Multilayer Network
	Backpropagation Networks
	Backpropagation Networks
	Backpropagation Networks
	Backpropagation Networks
	Backpropagation Networks
	Slide 44
	Backpropagation Networks
	Backpropagation Networks
	Slide 47
	Slide 48
	Slide 49
	References
	Understanding Supervised and Unsupervised Learning
	Two possible Solutions…
	Supervised Learning
	Supervised Vs Unsupervised
	Unsupervised Learning
	Unsupervised Neural Networks –Kohonen Learning
	Self Organizing Map – Network Structure
	SOM-Algorithm
	SOM - Algorithm
	References

