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i What is Mechatronics?

= Synergistic combination of mechanics,
electronics, microprocessors and control
engineering
= Like concurrent engineering
= Does not take advantage of inherent uniqueness

available

= Control of complex electro-mechanical

systems

= Rethinking of machine component design by use
of mechanics, electronics and computation

= Allows more reconfigurablility




i What is Mechatronics

= Design example: timing belt in
automobile

= Timing belt mechanically synchronizes
and supervises operation

= Mechatronics: replace timing belt with
software

= Allows reconfigurability online



i What is Mechatronics

= Second example: Active suspension

= Design of suspension to achieve
different characteristics under different
operating environments

s Demonstrates fundamental trade-offs



i What is Mechatronics

Low tech, low cost, low performance pure
mechanlcal elements spring shock absorber

« Can use dynamic systems to find coefficients via
time or frequency domain

= mid tech, cost, performance: electronics: op amps,
RLC circuits, hydraulic actuators

= Typically achieve two operating regimes, e.g.
highway vs off-road

= High tech, cost , performance: microprocessor-based
online adjustment of parameters

= Infinitely adjustable performance

| %



‘L Research Projects

Discrete Sliding Mode Control with Applications

o Hellcopter Flight Control

= OHS Aircraft Flight Control

= Magnetic Bearings in Papermaking Systems
= Robust Control for Marginally stable systems
s Process Control and System ID

s Controller Architecture
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i Theme of research

s Control of

Uncertain

Nonlinear

Time-varying

Industrially relevant
Electro-mechanical systems

= This is control applications side of
mechatronics

= Involves sensor, actuator, controller design



i What is control?

= Nominal performance
= Servo tracking
= Disturbance rejection
= Low sensitivity
« Minimal effects of unknown aspects
= Non-time-varying



i Helicopter Flight Control

= Model-following vs. stability
= Conflicting Multi-objective

= Controller Optimization
= Order reduction
= System validation




Helicopter Flight Control
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i OHS Aircraft Flight Control

= Outboard Horizontal Stabilizer

= Non-intuitive to fly

= Developed sensors and actuators
= Model identification and validation
= Gain-scheduled adaptive control

= Reconfigurable controller based upon
feedback available
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Magnetic Bearings In
i Papermaking Systems

= System identification for magnetic
bearings

= Nonlinear, unstable system
= Closed loop modeling

= Control Design using Sliding Mode
methods and state estimators

= Servo-Control of shaft position



iMagnetic Bearings
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Magnetic Bearings In
i Papermaking Systems

= Papermaking system modeling

= Use of mag bearings for tension control
actuation and model development

= Control Design and implementation
Issues

= Compare performance with standard
roller torque control



‘_L Papermaking Tension Control

The H-infinity norm of different order apprx system The H-infinity norm of transfer function of PID controller by changing velocity
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Robust Control
via Q-parameterization

c

= Ball an_d beam application
= Stability margin optimization: Nevanlinna-Pick
interpolation




i Experimental Results

= Large lag

= Non-minimum phase
behaviour

= Friction, hard limits
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Robust Stability Margin
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i Control Techniques

= Classic PI control
= Internal Model Control (IMC)
= Model Predictive Control (MPC)

= Linear Quadratic Regulator (LQR)
Optimal Control



MPC Control Results

Different set points changes to test MPC
controller performance
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i Performance Comparison

| %

o Controllers | p IMC | MPC | LQR
M,(%) 4 20 5 32
t. (sec) 31 99 50 210
ss e(%0) 1.5 0 0 0
llell, 2.7 0.8 0.45 0.3
llell. 0.2 0.08 0.05 0.05
t..(sec) 34 102 47 76




i Controller Architecture

= Given conflicting and redundant
information

= Design controller with best practical
behaviour

=« Good nominal performance
= Robust stability
= Implementable



Undergraduate Program:
i Mechatronics Lab with Applications

= Developed lab environment for teaching and research

= [WO courses: - linear systems, - prototyping

= Hands-on work in:
= Mmodeling
= System identification
= Sampled-data systems
= Optical encoding
= State estimation

= Control design



i Mechatronics Lab with Applications

= Multivariable fluid flow control system
= [wo-input-two-outputs
= Variable dynamics
= Model Predictive Control
= Chemical Process Emulation



Fluid Flow Control
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i Mechatronics Lab with Applications

= Ball and Beam system

= Hierarchical control system
= Motor position servo
= Ball position
= Solve via Q-parameterization

= Robust stability and optimal nominal
performance



‘L Ball and Beam System

Quanser Product




i Mechatronics Lab with Applications

= Heat Flow Apparatus
= Unique design
= Varying deadtime for challenging control
= Demonstrate industrial control schemes
= PID controllers
= Deadtime compensators



i Directions for the Future

= Robust Performance

= robust stability and nominal performance
simultaneously guaranteed

= Multiobjective Control Design

« Systems that meet conflicting, and disparate
objectives

s Performance evaluation for soft measures
= Fuzzy systems

= Bottom line: Mechatronics
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i Summary

= Control applications in electro-
mechanical systems

= Emphasis on usability
= Complex problems from simple systems

= Undergraduate program: hands-on
learning and dealing with systems form
user to end-effector





