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Maxwell’s Equation’s in integral form
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Maxwell’s Equations

Gauss’s law (electricity):
» The total electric flux through any closed surface equals th

inside that surface divided by e,
» This relates an electric field to the charge distribution that c

mB-dA:O

» Gauss’s law (magnetism):
» The total magnetic flux through any closed surface is zero

> 'gIaLsai;ays the number of field lines that enter a closed volu

the number that leave that volume
» This implies the magnetic field lines cannot begin or




Maxwell’s Equations

do
.ds = — B
[ﬁE S "

Faraday’s law of Induction:

. g'lhis describes the creation of an electric field by a changing mag
ux

* The law states that the emf, which is the line integral of the elect

around any closed path, equals the rate of change of the magnetic

through any surface bounded by that path

do
[ﬁB ds =y, l+¢&_p,
dt

Ampere-Maxwell law is a generalization of Ampere’s law
It describes the creation of a magnetic field by an electric field a
electric currents




Maxwell’s Equation’s in free space

Since there is no charge or current, the general Maxwell’s equa
reduce to

mjAé.d/&zo




Maxwell’s equations in differential for

oD
VxH =J+—
dt
0B
VxE =—-—
dt
V.D=p
v.B =0

Constitutive relations
D =¢E = greoE

B=uH=p uH
J =oE
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S| Units
Amp/ metre?
Coulomb/metre?
Amps/metre
Tesla

Volt/metre
Farad/metre
Henry/metre
Siemen/metre




Maxwell’s Equations

Name Integral Form Differential Form
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Wave equation in free space

In free space conductivity =0

Since J=cE, therefore J=0

oD oD
VxH =J+ =
dt dt

0B
VxE =—-——

dt

Taking curl of both sides of latter equation:
oB o o

VxVxE=-V x————Vsz—,uo—VxH
ot
8(8D\
Oat\at
o°E
VxVxxE=—-u,¢ .

ot




Wave equation in free space (cont...)
0°E

ot?

VxVxE=-u,¢

for any vectorA, v xvV x A = VW A -V 2A

2 2 2
0

6 6 L [
where v* - —+ —+— is the Laplacian operator
0X oy 01z

0°E

VW E-V°E =-u,e

ot?

Since there are no free charges in free space so V.E=p=0 and we get

) 0°E
V' E=pu,¢ 5
ot




Transverse relation between E and H

Consider a uniform plane wave, propagating in the z direction
Therefore,

oE oE

— = — =0

OX oy
In a source free region, V.D=p =0 (Gauss’ law) :

0E, OE, OE

V.E = + +—==0
OX oy 0z

Since E is independent of x and vy, so

=0 = ~=0 = E,=0 (E, =const is not awave )
OX oy 0z

e So for a plane wave, E has no component in the direction of
propagation. Similarly for H.

e Plane waves have only transverse E and H components.




Phase relationship between E and H

Consider a linearly polarised wave that has a transverse
component in (say) the y direction only:
E,=E, f(z-w)

OE, oH |
= ¢ =-¢evE _f'(z-wt) =
ot 0z
= HX:—ngOJ'f'(z—vt)dz+const = —evE _f(z-wt)
= —¢VE |
&
H =- |—E
y
Ho
Similarly
£
H = |—E
y X
My

Thus H and E are in phase and orthogonal



Wave equation for a conducting mediu

wave equation with J=0

oD oB

VxH=J+—— VxE=-—

dt dt

0B 0 0
VxVxE=-Vx—=-—VxB=-uy, —VxH

ot ot ot

(5.2
VxVxE=-uy, —|J+—
ot | ot )
) J = oE
0J o0 D
= -, - U, ; D = ¢E
ot ot
OE =
= —[H,0 —— U &



Wave equation for a conducting mediu

2

o= 0 E
VxVxE=-uoc—-pu,¢
ot ot’
) OE 0°E
VW E-V E=-uo—-u,¢
ot ot’
In the absence of sources VE=p=0
2
, OE 0 E
V'E=uyuo—+u,c
ot ot’

This 1s the wave equation for a decaying wave




Reflection and refraction of plane wa

- At a discontinuity the change in u, € and o results i
partial reflection and transmission of a wave

For example, consider normal incidence:

Incident  wave =Eiej(wt_ﬁz)

Reflected  wave = E e @+ 7?)

Where E, is a complex number determined by the
boundary conditions




Reflection at a perfect conductor

- Tangential E is continuous across the boundary

- For a perfect conductor E just inside the
surface is zero

. E just outside the conductor must be zero

E,+E, =0
= E; =-E

« Amplitude of reflected wave is equal to amplitud&k
of incident wave, but reversed in phase




Reflection from a perfect conductor

_— resultant wawe

incident wawe
tranzsmitted wawve




Reflection from a perfect conductor
- Direction of propagation is given by ExH
If the incident wave is polarised along the y axis:
E.=a y E yi
= H; =-a,H,

then ExH =(-a,6xa,)EH

yi Xi
= +a Z E yi H Xi
That is, a z-directed wave.

\

For the reflected wave E xH = -a,E ;H, ance, = -a E

y — i
SO H, =-a H_, =H, and the magnetic field is
reflected without change in phase




Reflection from a perfect conductor
o 1 +e” ¢

2
j(a)t—ﬁz) + H e j(a)t+,Bz)
r

Since cos ¢ =
H.(z,t)=H.e
= Hi(ejﬁZ +e_jﬂz)eja)t

= 2H, cos Bz g 1!

As for E;, H. is real (they are in phase), therefore

H.(z,t)=Re{2H cos Bz (cos wt+ jsin wt)}=2H, cos Bz cos wt




Reflection from a perfect conductor

H.(z,t)=2H. cos Bz cos wt
Resultant magnetic field strength also has a standing-wave
distribution

In contrast to E, H has a maximum at the surface and zeros
(2n+1)l/4 from the surface

—— resultant wave

—— resultant wave




Reflection from a perfect conductor

E.(z,t)=2E;sin pzsin wt

H,(z,t)=2H, cos Bz cos wt

- E-and H; are p/2 out of phase
- No net power flow as expected

- power flow in +z direction is equal to power
flow in - z direction




Reflection by a perfect dielectric

- Reflection by a perfect dielectric (J=cE=0)
- no loss

- Wave is incident normally
- E and H parallel to surface

- They are incident, reflected (in medium 1) and
transmitted wave (in medium 2)




Reflection from a lossless dielectric

resultant wawe

incident wawe
transmitted wawe

reflected wawe




Reflection by a lossless dielectric

n.H

E, = i :

jou
Erz_anr 77\/ ]
£, - o+ Jwe &,

n,H

Continuity of E and H at boundary requires:
E.+E, =E,

H.+H. =H,
Which can be combined to give
1 1 1

H.+H =—(E,-E, )=H,=—E, = —(E,
71 75 7>

1 1

—(E;-E,)=—(E, + E,) _ E, _

1 2 — PE E

= ’72(Ei ~ Er):771(Ei + Er)

= Ei(772 _771)= Er(772 +771)




Reflection by a lossless dielectric

E.+E, =E,
Hi+Hr = Ht

Similarly

E, _E. +E E, Ny~ M *my 27,

Tg = = = +1 = + =
E, E, E, My +17y TNy +1y My 14
2n, .. . .
Tg = The transmission coefficient

\ i




Reflection by a lossless dielectric

H Ei

He mE n, 27,  2m .
= = = H

H n,E, Mo My 11y 715 +14

E, V% ~ W& ng-n,
Pe = = = =~ PNy
Ei ,’gl+,’gz n1+n2

’Z'E = = =
Ei ,\/gl+,\/g2 n,+n,
2'\’52 2n2
'Z'H = =
,/81 + ,/82 n,+n,




Energy in electromagnetic waves

The electric and magnetic energy stored is
given as

l 2 l 2
u=—¢E +—B - ,
2 21, u=¢g,E
1 2
E_ozgzcz L < u=—2B
B, K [TIE> U,




Poynting Vector

- Poynting vector points in the direction the wave
moves

- Poynting vector gives the energy passing through a
unit area in 1 sec.

. Units are Watts/m?

-1 - -
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