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OUTLINE

• Maxwell’s Equations (Integral and Differential form)

• Wave equation of an em wave in free space

• Transverse relation between E and H

• Wave equation of an em wave in conducting medium

• Reflection from a perfect conductor

• Reflection from a perfect dielectric

• Poynting vector



Maxwell’s Equation’s in integral form
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Gauss’s law (electricity):
 The total electric flux through any closed surface equals the net charge 

inside that surface divided by eo

 This relates an electric field to the charge distribution that creates it

 Gauss’s law (magnetism): 
 The total magnetic flux through any closed surface is zero
 This says the number of field lines that enter a closed volume must 

equal 
the number that leave that volume

 This implies the magnetic field lines cannot begin or end at any point
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Maxwell’s Equations 

Faraday’s law of Induction:
• This describes the creation of an electric field by a changing magnetic 

flux
• The law states that the emf, which is the line integral of the electric field 

around any closed path, equals the rate of change of the magnetic flux 
through any surface bounded by that path

Ampere-Maxwell law is a generalization of Ampere’s law
• It describes the creation of a magnetic field by an electric field and 

electric currents
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Maxwell’s Equation’s in free space 
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Since there is no charge or current, the general Maxwell’s equations 

reduce to



Maxwell’s equations in differential form

SI Units

• J Amp/ metre2

• D Coulomb/metre2

• H Amps/metre

• B Tesla

• E Volt/metre

•  Farad/metre

•  Henry/metre

• s Siemen/metre
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Wave equation in free space
In free space conductivity s=0 

Since J=sE, therefore J=0
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Taking curl of both sides of latter equation:



Wave equation in free space (cont…..)

for any vector A,

where is the Laplacian operator
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Since there are no free charges in free space so .E==0 and we get



Transverse relation between E and H
Consider a uniform plane wave, propagating in the z direction

Therefore,
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In a source free region, .D= =0 (Gauss’ law) :

Since E is independent of x and y, so

• So for a plane wave, E has no component in the direction of 

propagation. Similarly for H.

• Plane waves have only transverse E and H components.



Phase relationship between E and H
Consider a linearly polarised wave that has a transverse 

component in (say) the y direction only:
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Thus H and E are in phase and orthogonal



Wave equation for a conducting medium
wave equation with J0
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Wave equation for a conducting medium (contd..)

In the absence of sources                      
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This is the wave equation for a decaying wave



Reflection and refraction of plane waves

• At a discontinuity the change in ,  and s results in 

partial reflection and transmission of a wave

For example, consider normal incidence:
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Where Er is a complex number determined by the 

boundary conditions



Reflection at a perfect conductor

• Tangential E is continuous across the boundary 

• For a perfect conductor E just inside the 
surface is zero

• E just outside the conductor must be zero
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• Amplitude of reflected wave is equal to amplitude 

of incident wave, but reversed in phase



Reflection from a perfect conductor
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Reflection from a perfect conductor

• Direction of propagation is given by EH

• If the incident wave is polarised along the y axis:
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Reflection from a perfect conductor

Since
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• Resultant magnetic field strength also has a standing-wave 

distribution

• In contrast to E, H has a maximum at the surface and zeros at 

(2n+1)l/4 from the surface
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Reflection from a perfect conductor

• ET and HT are p/2 out of phase

• No net power flow as expected

• power flow in +z direction is equal to power 

flow in - z direction
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Reflection by a perfect dielectric

• Reflection by a perfect dielectric (J=sE=0)

• no loss

• Wave is incident normally

• E and H parallel to surface

• They are incident, reflected (in medium 1) and 

transmitted wave (in medium 2)
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Reflection from a lossless dielectric
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Reflection by a lossless dielectric

Continuity of E and H at boundary requires:
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Reflection by a lossless dielectric

Similarly
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Reflection by a lossless dielectric
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Energy in electromagnetic waves
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The electric and magnetic energy stored is 

given as



Poynting Vector

• Poynting vector points in the direction the wave 
moves

• Poynting vector gives the energy passing through a 
unit area in 1 sec.

• Units  are Watts/m2

 
0

1
S E B 



  

S c u



  

2 2

o o o

E c BE B
S

μ μ c μ


