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Directional Derivative
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Directional Derivative

You are standing on the hillside represented by z = f (x) in 

Figure 13.42 and want to determine the hill’s incline toward 
the z- axis.

Figure 13.42
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You already know how to determine the slopes in two 

different directions—the slope in the y-direction would be 

given by the partial derivative fy(x, y), and the slope in the x-

direction would be given by the partial derivative fx(x, y).

In this section, you will see that these two partial derivatives 

can be used to find the slope in any direction.

Directional Derivative
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To determine the slope at a point on a surface, you will 

define a new type of derivative called a directional 

derivative.

Begin by letting z = f(x, y) be a surface and P(x0, y0) be a 

point in the domain of f, as shown in Figure 13.43. 

The “direction” of the directional 
derivative is given by a unit vector

u = cos q i + sin q j

where q is the angle the vector 

makes with the positive x-axis.

Figure 13.43

Directional Derivative
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To find the desired slope, reduce the problem to two 

dimensions by intersecting the surface with a vertical plane 

passing through the point P and parallel to u, as shown in 

Figure 13.44. 

This vertical plane intersects the 

surface to form a curve C. 

The slope of the surface at 

(x0, y0, f(x0, y0)) in the direction 

of u is defined as the slope of 

the curve C at that point.

Figure 13.44

Directional Derivative
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Informally, you can write the slope of the curve C as a limit 

that looks much like those used in single-variable calculus. 

The vertical plane used to form C intersects the xy-plane in a 

line L, represented by the parametric equations

x = x0 + t cos q and           y = y0 + t sin q
so that for any value of t, the point Q(x, y) lies on the line L. 

For each of the points P and Q, there is a corresponding 

point on the surface.

(x0, y0, f(x0, y0)) Point above P

(x, y, f(x, y)) Point above Q

Directional Derivative
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Moreover, because the distance between P and Q is

you can write the slope of the secant line through               

(x0, y0, f(x0, y0)) and (x, y, f(x, y)) as

Finally, by letting t approach 0, you arrive at the following 

definition.

Directional Derivative
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Directional Derivative

Calculating directional derivatives by this definition is similar 

to finding the derivative of one variable by the limiting 

process. A simpler “working” formula for finding directional 
derivatives involves the partial derivatives fx and fy .
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Directional Derivative
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There are infinitely many directional derivatives of a surface 

at a given point—one for each direction specified by u, as 

shown in Figure 13.45. 

Figure 13.45

Directional Derivative



1313

Two of these are the partial derivatives fx and fy.

Directional Derivative
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Example 1 – Finding a Directional Derivative

Find the directional derivative of

at (1, 2) in the direction of



1515

Example 1 – Solution

Because fx and fy are continuous, f is differentiable, and 

you can apply Theorem 13.9.

Evaluating at q = p/3, x = 1, and y = 2 produces

Figure 13.46
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The Gradient of a Function of Two 

Variables
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The Gradient of a Function of Two Variables

The gradient of a function of two variables is a vector-valued 

function of two variables.



1818

The Gradient of a Function of Two Variables

Figure 13.48



1919

Example 3 – Finding the Gradient of a Function

Find the gradient of f(x, y) = y ln x + xy2 at the point (1, 2).

Solution:

Using 

and

you have

At the point (1, 2), the gradient is
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The Gradient of a Function of Two Variables

Because the gradient of f is a vector, you can write the 

directional derivative of f in the direction of u as 

In other words, the directional derivative is the dot product of 

the gradient and the direction vector.
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Example 4 – Using —f(x, y) to Find a Directional Derivative

Find the directional derivative of

f(x, y) = 3x2 – 2y2

at             in the direction from

Solution:

Because the partials of f are continuous, f is differentiable 

and you can apply Theorem 13.10. 

A vector in the specified direction is
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Example 4 – Solution

and a unit vector in this direction is

Because —f(x, y) = fx(x, y)i + fy(x, y)j = 6xi – 4yj, the gradient 

at            is

cont’d
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Consequently, at             the directional derivative is

See Figure 13.49.

Figure 13.49

Example 4 – Solution
cont’d
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Applications of the Gradient
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Applications of the Gradient
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Example 5 – Finding the Direction of Maximum Increase

The temperature in degrees Celsius on the surface of a 

metal plate is 

T(x, y) = 20 – 4x2 – y2  

where x and y are measured in centimeters. In what direction 

from (2, –3) does the temperature increase most rapidly? 

What is this rate of increase?

Solution:

The gradient is

—T(x, y) = Tx(x, y)i + Ty(x, y)j

= –8xi – 2yj.
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Example 5 – Solution

It follows that the direction of maximum 

increase is given by

—T(2, –3) = –16i + 6j

as shown in Figure 13.51, 

and the rate of increase is

||—T(2, –3)|| 

Figure 13.51

cont’d



2828

Applications of the Gradient
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Example 7 – Finding a Normal Vector to a Level Curve

Sketch the level curve corresponding to c = 0 for the function 

given by f(x, y) = y – sin x and find a normal vector at several 

points on the curve.

Solution:

The level curve for c = 0 is given by

0 = y – sin x 

y = sin x 

as shown in Figure 13.53(a).

Figure 13.53(a)
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Example 7 – Solution

Because the gradient vector of f at (x, y) is

—f(x, y) = fx(x, y)i + fy(x, y)j

= –cos xi + j

you can use Theorem 13.12 to conclude that —f(x, y) is 

normal to the level curve at the point (x, y).

Some gradient vectors are

cont’d
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These are shown in 

Figure 13.53(b).

Figure 13.53(b)

Example 7 – Solution
cont’d
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Functions of Three Variables
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Functions of Three Variables
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Example 8 – Finding the Gradient for a Function of Three Variables

Find —f(x, y, z) for the function given by

f(x, y, z) = x2 + y2 – 4z

and find the direction of maximum increase of f at the point

(2, –1, 1).

Solution:

The gradient vector is 

—f(x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k

= 2xi + 2yj – 4k
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Example 8 – Solution

So, it follows that the direction of maximum increase at 

(2, –1, 1) is

—f(2, –1, 1) = 4i – 2j – 4k. See Figure 13.54.

Figure 13.54

cont’d
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Curl
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Curl

It has meaning when it operates on a scalar function to 

produce the gradient of f :

If we think of — as a vector with components ∂/∂x, ∂/∂y, and 

∂/∂z, we can also consider the formal cross product of —
with the vector field F as follows:
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So the easiest way to remember Definition 1 is by means of 

the symbolic expression

Curl



4040

Example 1
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Example 1 – Solution
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Recall that the gradient of a function f of three variables is a 

vector field on      and so we can compute its curl. 

The following theorem says that the curl of a gradient 

vector field is 0.

Curl
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Curl
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Curl

The converse of Theorem 3 is not true in general, but the 

following theorem says the converse is true if F is defined 

everywhere. (More generally it is true if the domain is 

simply-connected, that is, “has no hole.”)
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Curl

Figure 1
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Curl

If curl F = 0 at a point P, then the fluid is free from rotations 

at P and F is called irrotational at P. 

In other words, there is no whirlpool or eddy at P. 

If curl F = 0, then a tiny paddle wheel moves with the fluid 

but doesn’t rotate about its axis.

If curl F ≠ 0, the paddle wheel rotates about its axis.
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Divergence
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Divergence

If F = P i + Q j + R k is a vector field on      and ∂P/∂x, 

∂Q/∂y, and ∂R/∂z exist, then the divergence of F is the 

function of three variables defined by

Observe that curl F is a vector field but div F is a scalar 

field.
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Divergence

In terms of the gradient operator 

— = (∂/∂x) i + (∂/∂y) j + (∂/∂z) k, the divergence of F can be 

written symbolically as the dot product of — and F:
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Example 4

If F(x, y, z) = xz i + xyz j + y2 k, find div F.

Solution:

By the definition of divergence (Equation 9 or 10) we have

div F = — ñ F

= z + xz
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Divergence

If F is a vector field on     , then curl F is also a vector field 

on     . As such, we can compute its divergence. 

The next theorem shows that the result is 0.

Again, the reason for the name divergence can be 

understood in the context of fluid flow.
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Divergence

If F(x, y, z) is the velocity of a fluid (or gas), then 

div F(x, y, z) represents the net rate of change (with respect 

to time) of the mass of fluid (or gas) flowing from the point 

(x, y, z) per unit volume. 

In other words, div F(x, y, z) measures the tendency of the 

fluid to diverge from the point (x, y, z). 

If div F = 0, then F is said to be incompressible.

Another differential operator occurs when we compute the 

divergence of a gradient vector field —f.
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Divergence

If f is a function of three variables, we have

and this expression occurs so often that we abbreviate it as 

—2
f. The operator

—2
= — ñ —

is called the Laplace operator because of its relation to 

Laplace’s equation
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Divergence

We can also apply the Laplace operator —2
to a vector field

F = P i + Q j + R k

in terms of its components:

—2
F = —2

P i + —2
Q j + —2

R k
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Integral Calculus

Line, Surface and Volume Integrals
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Fundamental Theorem for Gradients
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Example 1.9
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Fundamental Theorem for Divergences 

Gauss’s Divergence Theorem

³ ³� �—
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The surface S encloses the volume V. 
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dx
dy

dz
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Example

Check the divergence theorem for

zyxv ˆ)2(ˆ)2(ˆ 22 xyzxyy ��� 
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Fundamental Theorem for Curls

Stokes’ theorem

The path P is the boundary of  the surface S.

The integral does not depend on S. 

³ ³� �u—
S P

lvav dd)(

³  �u— 0)( av d
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dz

dy
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You must do it in a consistent way!
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Example
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Check Stokes’ Theorem for
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THANK YOU
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Laplace Transform & Fourier Series

Objectives

Objectives

After going through this unit the reader should be able to understand
the

Calculation of Laplace transform, which include the existence of
the transform with some remarks on the theory.

Properties of Laplace transform, transform of derivatives and
integrals and convolution theorem which are crucial in the
application of the method to the solution of ordinary differential
equations.

The use of unit step function as discontinuous forcing function
which is very common in science and engineering.

Dirac - Delta function ( concept of impulse, may be interrupted
as a force of very large magnitude applied for just an instant).

Laplace transform of periodic functions.

Use of Laplace transform to solve the certain type of differential
equations.

Expansion of the periodic functions as a Fourier series.



Laplace Transform & Fourier Series

Introduction

Plan of Talk

1 Objectives

2 Introduction

3 Existence of Laplace Transform

4 Properties of Laplace Transform

5 Laplace Transform of Derivatives & Integrals

6 Unit Step Function & Dirac Delta Function

7 Convolution of Functions

8 Laplace Transform of Periodic Function

9 Inverse Laplace Transform

10 Applications to Differential & Integral Equations

11 Fourier Series

12 Summary



Laplace Transform & Fourier Series

Introduction

Laplace Transform

Definition

The Laplace transform of a function f(t) of a real variable t and

defined for t ≥ 0 is a function F (s) defined by F (s) =

∫
∞

0

e−stf(t)dt

provided the integral exists and symbolically this is written as
L[f(t)] = F (s).
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Introduction

Laplace Transform of some basic functions

f(t) L[f(t)] f(t) L[f(t)]

1
1

s
, s > 0 sin at

a

s2 + a2
, s > 0

t
1

s2
, s > 0 cos at

s

s2 + a2
, s > 0

tn
n!

sn+1
, s > 0, n = 0, 1, 2, · · · sinh at

a

s2 − a2
, s > |a|

ta
Γ(a + 1)

sa + 1
cosh at

s

s2 − a2
, s > |a|

eat 1

s − a
, s > a
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Laplace Transform & Fourier Series

Existence of Laplace Transform

Existence of Laplace Transform

Here we discuss the condition of convergence of the improper integral

∫
∞

0

e−stf(t)dt = lim
b→∞

∫ b

0

e−stf(t)dt (1)

This integral converges whenever
∫

∞

0

|e−stf(t)|dt (2)

converges and in this case we say that the integral (1) converges
absolutely and hence converges. If there exists a nonnegative function

g(t) such that |e−stf(t)| ≤ g(t) and

∫
∞

0

g(t)dt converges, then by

comparison test, it is concluded that (1) converges. Moreover, the
function f(t) defined for all t ≥ 0 must be piecewise continuous on
[0,∞), i.e. the function f(t) is continuous over every finite interval
0 ≤ t ≤ b, except at a finite number of points where there are jump
discontinuity at which the left hand limit and the right hand limit
exist but are unequal.
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Existence of Laplace Transform

Existence of Laplace Transform

The piecewise continuous function can be illustrated in the figure
given below.
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Existence of Laplace Transform

Exponential order of f(t)

Apart from the piecewise continuity of f(t) for t ≥ 0, the other
assumption is that f(t) is of exponential order.

Definition

A function f(t) on [0,∞) is said to be of exponential order if there
exist constants M and k such that

|f(t)| ≤ Mekt, t ≥ 0

The constant function, the function tn, et, sin t, tn sin t where n is a
positive integer are of exponential order whereas et2

is not of
exponential order.
Results: Let f be a piecewise continuous function on [0,∞) then

f is of exponential order if for some constant α lim
t→∞

[
f(t)

eαt

]

= 0

f is not of exponential order if lim
t→∞

[
f(t)

eαt

]

= ∞, for all real

numbers α.
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Existence of Laplace Transform

Example 1

Show that the function f(t) = tn is of exponential order.

If (t) is of exponential order then we known that for every α > 0

lim
t→∞

[
tn

eαt

]

= 0

Hence for every given ǫ there exists some constant t > t0 such that
∣
∣
∣
∣

tn

eαt
− 0

∣
∣
∣
∣
< ǫ for all t > t0

Since tn is bounded on [0, t0], this implies that |tn| < Meαt for
t ≥ 0, α > 0 on taking ǫ = 1.
Hence by the definition tn is of exponential order.
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Existence of Laplace Transform

Existence of Laplace Transform

Theorem

Let f(t) be a piecewise continuous function on every finite interval

t ≥ 0 and of exponential order. Then there exist a real number k such

that

∫
∞

0

e−stf(t)dt converges for s > k.
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Existence of Laplace Transform

Example 2

Show that the Laplace transform of f(t) = t−1/2 exists, even though it
has the discontinuity of infinite order at t = 0.

Since f(t) has the discontinuity of infinite order at t = 0, which is
different from piecewise continuity. By definition of Laplace
transform, we get

L[t−1/2] =

∫
∞

0

e−stt−1/2dt

On substituting st = x, we get

L[t−1/2] =

∫
∞

0

e−x

s

(x

s

)
−1/2

dx =
Γ(1/2)√

s
=

√
π√
s
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Properties of Laplace Transform

Properties of Laplace Transform

In this section we discuss the following important properties of
Laplace transform which are useful to find an easiest way of
computing the Laplace transform without using the definition.

Linearity of Laplace Transform

First Shifting Theorem

Multiplication by tn

Division by t
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Properties of Laplace Transform

Linearity of Laplace Transform

If L[f(t)] = F (s)and L[g(t)] = G(s), then for any constant a and b

L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)] = aF (s) + bG(s)

Example 3. Find the Laplace transform of f(t) = (t − 1)2 + sin t
using the linearity property.

L[(t − 1)2 + sin t] = L[t2 − 2t + 1 + sin t]

⇒ L[f(t)] = L[t2] − 2L[t] + L[1] + L[sin t]

⇒ L[f(t)] =
2

s3
− 2

s2
+

1

s
+

1

s2 + 1
, s > 0
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Properties of Laplace Transform

First Shifting Theorem

If L[f(t)] = F (s), s > k, then eatf(t) has the transform
F (s − a), s − a > k that is

L[eatf(t)] = F (s − a)

Example 4. Find the Laplace transform of eat(t − 1)2.

L[(t − 1)2] = L[t2 − 2t + 1] =
2

s3
− 1

s2
+

1

s

Thus,

L[eat(t − 1)2] =
2

(s − a)3
− 1

(s − a)2
+

1

s − a
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Properties of Laplace Transform

Multiplication by tn

If L[f(t)] = F (s), then

L[tnf(t)] = (−1)nFn(s)

where Fn(s) is the nth differentiation of the transform with respect to
s.

Example 5. Find the Laplace transform of t2 cosh 2t.

Let f(t) = cosh 2t, then L[f(t)] =
s

s2 − 4

Thus,

L[t2 cosh 2t] =
(−1)2d2

ds2

(
s

s2 − 4

)

=
2s3 + 24s

(s2 − 4)3
, s > 2
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Properties of Laplace Transform

Division by t

If L[f(t)] = F (s) and lim
t→0

f(t)

t
exists, then

L

[
f(t)

t

]

=

∫
∞

s

F (s̃)ds̃

provided the integral on the right hand side exists.

Example 6. Find the Laplace transform of
sin t

t
.

L

[
sin t

t

]

=

∫
∞

s

F (s̃)ds̃, where F (s̃) = L[sin t] =
1

s2 + 1
Thus,

L

[
sin t

t

]

=

∫
∞

s

1

s̃2 + 1
d(s̃) =

π

2
− tan−1 s
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Laplace Transform of Derivatives & Integrals

Laplace Transform of Derivative

Theorem

If f(t) is continuous for t ≥ 0 and of exponential order and also f ′(t)
is piecewise continuous and of exponential order for t ≥ 0 then

L[f ′(t)] = sL[f(t) − f(0)]

Similarly, if f(t), f ′(t), f ′′(t), · · · , f (n−1)(t) are continuous for all

t ≥ 0 and of exponential order and fn(t) is piecewise continuous and

of exponential order. Then

L[f (n)(t)] = snL[f(t)] − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0)
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Laplace Transform of Derivatives & Integrals

Example 7

Using the Laplace transform of the derivatives find the Laplace
transform of f(t) = sin2 t.

We have f(t) = sin2 t ⇒ f ′(t) = 2 sin t cos t = sin 2t. Also f(0) = 0.

L[f ′(t)] = sL[f(t)] − f(0) ⇒ L[sin 2t] = sL[f(t)] − 0

2

s2 + 4
= sL[f(t)] ⇒ L[f(t)] =

2

s(s2 + 4)
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Laplace Transform of Derivatives & Integrals

Laplace Transform of Integrals

Theorem

If L[f(t)] = F (s) and f(t) is piecewise continuous function of

exponential order, then

L

[∫ t

0

f(u)du

]

=
F (s)

s
.

In general,

L








∫ t

0

∫ t

0

· · ·
∫ t

0

f(u)dudu · · · du

︸ ︷︷ ︸

n−times








=
F (s)

sn
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Laplace Transform of Derivatives & Integrals

Example 8

Find the Laplace transform of

∫ t

0

e−t cos tdt.

We know that L[e−t cos t] =
s + 1

(s + 1)2 + 1
(Using the first shifting

theorem)

Thus, L

[∫ t

0

f(u)du

]

=
F (s)

s

Hence L

[∫ t

0

e−t cos tdt

]

=
s + 1

s[(s + 1)2 + 1]
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Unit Step Function & Dirac Delta Function

Unit Step Function

Definition

The unit step function u(t) is defined by

u(t) =

{
0 if t < 0
1 if t ≥ 1

where 0 is the point of jump discontinuity. This function is also
known as Heaviside function. If the jump discontinuity is at a point
t = a > 0, then the unit step function u(t − a) or ua(t) is defined by

u(t − a) =

{
0 if t < a
1 if t ≥ a
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Unit Step Function & Dirac Delta Function

Graph of Unit Step Function

The Unit step function can be plotted as
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Unit Step Function & Dirac Delta Function

Second Shifting Theorem or T-Shifting

Theorem

Let f(t) be piecewise continuous function and of exponential order and

if L[f(t)] = F (s), then

L[u(t − a)f(t − a)] = e−asF (s)

Example 9. Find the Laplace transform of et−3u(t − 3).

On comparing et−3u(t − 3) with f(t − a)u(t − a), we get that

L[et−3u(t − 3)] = e−3sF (s), where F (s) = L[f(t)] and f(t) = et so

F (s) =
1

s − 1

Thus,

L[et−3u(t − 3)] =
e−3s

s − 1
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Unit Step Function & Dirac Delta Function

Example 10

Express the following function in terms of unit step function and then
find the Laplace transform

f(t) =

{
2t if 0 < t < π
1 if t > π

We can write the function f(t) as

f(t) = 2t[u(t − 0) − u(t − π)] + 1[u(t − π)]
Thus, we get f(t) = 2tu(t) − 2(t − π)u(t − π) − (2π − 1)u(t − π)

On taking the Laplace transform on both sides and using the second
shifting property we get

L[f(t)] =
2

s2
− 2

e−π

s2
− (2π − 1)

e−π

s
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Unit Step Function & Dirac Delta Function

Unit Impulse Function or Dirac Delta Function

Definition

The unit impulse function or Dirac Delta function is given by
δ(t − a) = lim

k→0
fk(t − a), where

fk(t − a) =

{
1/k if a ≤ t ≤ a + k
0 otherwise

Thus,

δ(t − a) =

{
∞ if t = a
0 otherwise

and

∫
∞

0

δ(t − a)dt = 1

Remark. The function δ(t − a) is zero everywhere except at a single
point but the integral of this function from 0 to ∞ is one, while in
calculus integral of such functions are zero.
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Unit Step Function & Dirac Delta Function

Laplace Transform of Dirac Delta Function

Since

fk(t − a) =

{
1/k if a ≤ t ≤ a + k
0 otherwise

Thus it can be written in terms of unit step function as

fk(t − a) =
1

k
[u(t − a) − u(t − (a + k))]

Taking Laplace transform on both sides

L[fk(t − a)] =
1

k
[L[u(t − a)] − L[u(t − (a + k))]] =

1

k

[
e−as

s
− e−(a+k)s

s
= e−as 1 − e−ks

ks

]

To find the Laplace transform of Dirac Delta function take the limit
k → 0. Thus, L[δ(t − a)] = e−as. In particular L[δ(t)] = 1.
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Unit Step Function & Dirac Delta Function

Example 11

Find the Laplace transform of t2u(t − 1) + δ(t − 1).

L[t2u(t − 1) + δ(t − 1)] = L[(t − 1 + 1)2u(t − 1) + Lδ(t − 1)]

= L[(t − 1)2u(t − 1)] + 2L[(t − 1)u(t − 1)] + L[u(t − 1)] + L[δ(t − 1)]

= e−s 2

s2
+ 2

e−s

s2
+

e−s

s
+ e−s

=
e−s

s3
[2 + 2s + s2 + s3]
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Laplace Transform & Fourier Series

Convolution of Functions

Convolution of Functions

Let f(t) and g(t) be the functions defined for t ≥ 0. Then the
convolution of f(t) and g(t) is defined by

(f ∗ g) =

∫ t

0

f(τ)g(t − τ)dτ, t ≥ 0

For example the convolution of
e3t and sin 4t is

e3t ∗ sin 4t =

∫ t

0

e3t sin 4(t− τ)dτ .
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Convolution of Functions

Convolution Theorem

Theorem

If L[f(t)] = F (s) and L[g(t)] = G(s), then

L[f ∗ g] = L[f(t)]L[g(t)]

Example 12. Find the Laplace transform of t ∗ eat.

L[t ∗ eat] = L[t]L[eat] =
1

s2
× 1

s − a
=

1

s2(s − a)
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Convolution of Functions

Error Function

Definition

Error function is defined by

erf(t) =
2√
π

∫ t

0

e−x2

dx

Naturally, the complementary error function is

erfc(t) = 1 − erf(t) =
2√
π

∫
∞

t

e−x2

dx.
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Laplace Transform of Periodic Function

Laplace Transform of Periodic Function

Definition

A function f(t) is said to be periodic if f(t + a) = f(t) for all values
of a. The number a is called the period of f(t).

i) Sawtoothwave function

f(t) =

{
t if 0 ≤ t < a
f(t + a) otherwise

ii) Squarewave function

f(t) =

{
k if 0 ≤ t < a
−k if a ≤ t < 2a
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Laplace Transform of Periodic Function

Laplace Transform of Periodic Function

Theorem

If f(t) is piecewise continuous function and of exponential order and

periodic with period a. Then

L[f(t)] =
1

1 − e−as

∫ a

0

e−stf(t)dt
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Laplace Transform of Periodic Function

Example 13

Find the Laplace transform of the function

f(t) =







1 if a < t <
a

2
−1 if

a

2
< t < a

L[f(t)] =
1

1 − e−as

[∫ a

0

e−stf(t)dt

]

=
1

1 − e−as

[
∫ a

2

0

e−stf(t)dt −
∫ a

a

2

e−stf(t)dt

]

=
1

s(1 − e−as)

[

1 + e−as − 2e
−as

2

]
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Inverse Laplace Transform

Inverse Laplace Transform

Definition

If L[f(t)] = F (s), then the function f(t) is called the inverse Laplace
transform of F (s). In symbolic way, we write

If L[f(t)] = F (s) then f(t) = L−1[F (s)]

Some of the standard results are given below

L−1

[
1

s

]

= 1

L−1

[
n!

sn+1

]

= tn

L−1

[
1

s − a

]

= eat

L−1

[
s

s2 + a2

]

= cos at

L−1

[
a

s2 + a2

]

= sin at
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Inverse Laplace Transform

Some More Important Results

Some more results using the properties of Laplace transform are given
below
If L−1[F (s)] = f(t), then

L−1[F (s − a)] = eatf(t)

L−1[Fn(s)] = (−1)ntnf(t)

L−1

[∫
∞

s

F (s̃)ds̃

]

=
f(t)

t

L−1

[
F (s)

s

]

=

∫ t

0

f(u)du

L−1[e−asF (s)] = u(t − a)f(t − a)

L−1[F (s)G(s)] = f(t) ∗ g(t)
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Inverse Laplace Transform

Example 14

Find the inverse Laplace transform of
s + 2

s2 − 4s + 13
.

Since
s + 2

s2 − 4s + 13
=

s + 2

(s − 2)2 + 32
=

s − 2 + 4

(s − 2)2 + 32

Thus,

L−1

[
s + 2

(s − 2)2 + 32

]

= L−1

[
s − 2

(s − 2)2 + 32

]

+ L−1

[
4

(s − 2)2 + 32

]

= e2t cos 3t +
4

3
e2t sin 3t
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Inverse Laplace Transform

Example 15

Find the inverse Laplace transform of
s

(s2 − 1)2
.

Since
s

(s2 − 1)2
= − 1

4(s + 1)2
+

1

4(s − 1)2

L−1

[
s

(s2 − 1)2

]

= −1

4
L−1

[
1

(s + 1)2

]

+
1

4
L−1

[
1

(s − 1)2

]

= −1

4
et.t +

1

4
t.e−t

=
t

4
(et − e−t) =

t

2
sinh t
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Inverse Laplace Transform

Example 16

Find the inverse Laplace transform of log
1 + s

s
.

Let L−1

[

log
1 + s

s

]

= f(t). Thus, F (s) = log
1 + s

s
We know that

L[tf(t)] = − d

ds
F (s) = − d

ds
[log(1 + s) − log s]

= − 1

1 + s
+

1

s
= −L[e−t] + L[1] = L[1 − e−t]

⇒ tf(t) = 1 − e−t ⇒ f(t) =
1 − e−t

t
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Inverse Laplace Transform

Example 17

Using the convolution theorem find the inverse Laplace transform of
s2

(s2 + 4)2
=

s

(s2 + 4)
· s

(s2 + 4)
.

By convolution theorem we have L−1[F (s)G(s)] = f ∗ g. Here,

F (s) = G(s) =
s

s2 + 4
. Thus,

L−1

[
s

s2 + 4
· s

s2 + 4

]

= L−1

[
s

s2 + 4

]

∗ L−1

[
s

s2 + 4

]

= cos 2t ∗ cos 2t =

∫ t

0

cos 2u cos 2(t − u)du

=
1

2

∫ t

0

[cos 2u + cos(4u − 2t)]du =
1

4
[2t cos 2t + sin 2t]
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Inverse Laplace Transform

Example 18

Find the inverse Laplace transform of
2

s2
− 2e−2s

s2
− 4e−2s

s
.

L−1

[
2

s2
− 2e−2s

s2
− 4e−2s

s

]

= L−1

[
2

s2

]

−L−1

[
2e−2s

s2

]

−L−1

[
4e−2s

s

]

Using the second shifting property in inverse form i.e.
L−1[e−asF (s)] = u(t − a)f(t − a) for second and third term in the
above equation we get

= 2t − 2(t − 2)u(t − 2) − 4u(t − 2) = 2t − 2tu(t − 2)

Hence

f(t) =

{
2t 0 < t < 2
0 t > 2
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Laplace Transform & Fourier Series

Applications to Differential & Integral Equations

Solution of Differential Equations

Consider the initial value problem
y′′ + py′ + qy = r(t), y(0) = y0, y′(0) = y

′

0 where p, q are constants.
To find the particular solution of this differential equation, apply Laplace
transform on both the sides of this equation to obtain

L[y′′] + pL[y′] + qL[y] = L[r(t)]

⇒ s2L[y] − sy(0) − y′(0) + p[sL[y] − y(0)] + qL[y] = R(s), R(s) = L[r(t)]

Simplifying, we obtain

L[y] =
R(s) + (s + p)y0 + y

′

0

s2 + ps + q

Since the RHS is a function of s, thus, we obtain

y(t) = L−1

[

R(s) + (s + p)y0 + y
′

0

s2 + ps + q

]

Here it has been assumed that the Laplace transforms of r(t), y, y′, y′′

exist.
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Applications to Differential & Integral Equations

Example 19

solve the differential equation y′′ +4y′ +3y = e−t, y(0) = 1, y′(0) = 1.
On taking Laplace transform on both the sides, we obtain

s2L[y] − sy(0) − y′(0) + 4[sL[y] − y(0)] + 3L[y] = L[e−t]

(s2 + 4s + 3)L[y] = s + 1 + 4s +
1

s + 1

⇒ L[y] =
s2 + 6s + 6

(s + 1)2(s + 3)

y = L−1

[
s2 + 6s + 6

(s + 1)2(s + 3)

]

= L−1

[
7

4s + 1
+

1

2(s + 1)2
− 3

4(s + 3)

]

=
7

4
e−t +

1

2
te−t − 3

4
e−3t
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Applications to Differential & Integral Equations

Integral Equations

Definition

The equation f(t) = y(t) +

∫ t

0

y(u)g(t − u)du is called the integral

equation in which the function y(t) is unknown.

This equation is of special form because the integrand is the
convolution of two functions and we solve this equations by means of
Laplace transform.

L[f(t)] = L[y(t)] + L[y(t)]L[g(t)]

l[y] =
L[f(t)]

1 + L[g(t)]
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Applications to Differential & Integral Equations

Example 20

Solve the integral equation y(t) = t3 +

∫ t

0

y(u) sin(t − u)du.

Applying Laplace transform on both the sides,

L[y] = L[t3] + L[y(t)]L[sin t]

L[y] =
L[t3]

1 − L[sin t]
=

3!

s4

(
s2 + 1

s2

)

=
3!

s4
+

3!

s6
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Fourier Series

Introduction

Definition

A function f(x) is said to be of period p if

f(x + p) = f(x)

Definition

A function f(x) defined on any symmetrical placed interval about
origin is said to be even if

f(−x) = f(x)

and is said to be odd if

f(−x) = −f(x)
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Fourier Series

Properties of Even & Odd Functions

The product of even and odd functions have the properties

(even)(odd)=(odd)(even)=odd and
(even)(even)=(odd)(odd)=even

if f(x) is odd,

∫ a

−a

f(x)dx = 0

if f(x) is even,

∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx
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Fourier Series

Fourier Series

Definition

The series

f(x) = a0 +

∞∑

n=1

(an cos nx + bn sin nx) (3)

with period 2π is called Fourier series if

a0 =
1

2π

∫ π

−π

f(x)dx

an =
1

π

∫ π

−π

f(x) cos nxdx, n = 1, 2, · · ·

bn =
1

π

∫ π

−π

f(x) sinnxdx, n = 1, 2, · · ·
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Fourier Series

Example 21

Find the Fourier series of the function
f(x) = x, −π ≤ x ≤ π, f(x + π) = f(x).

Here, a0 =
1

2π

∫ π

−π

f(x)dx = 0

an =
1

π

∫ π

−π

x cos nxdx = 0

bn =
1

π

∫ π

−π

x sin nxdx =
2

π

∫ π

0

x sin nxdx

= − 2

n
cos nπ =

2

n
(−1)n+1. Thus, we get

x = 2

(

sin x − sin 2x

2
+

sin 3x

3
− · · ·

)

which is the required series.
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Fourier Series

Example 22

Find the Fourier series of

f(x) =

{
−1 −π < x < 0
1 0 < x < π

Here, a0 =
1

2π

[∫ 0

−π

(−1)dx +

∫ π

0

(1)dx

]

= 0

an =
1

π

∫ 0

−π

(− cos nx)dx +
1

π

∫ π

0

(cos nx)dx = 0

Similarly, bn =
1

π

∫ 0

−π

(− sin nx)dx +
1

π

∫ π

0

(sinnx)dx

=
1

nπ
[cos 0 − cos(−nπ) − cos(nπ) + cos 0]

=
2

nπ
(1 − cos nπ) =

2

nπ
(1 − (−1)n)

Thus, b2n = 0, b2n−1 =
4

(2n − 1)π
, n = 1, 2, · · · and the corresponding

Fourier series is given by

f(x) =
4

π

(

sin x +
sin 3x

3
+

sin 5x

5
+ · · ·

)
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Fourier Series

Convergence and Sum of Fourier Series

If f(x) is piecewise continuous function in the interval −π ≤ x ≤ π
with period 2π and also piecewise smooth (function f(x) is said to be
piecewise smooth if it is differential on the interval, except a finite
number of points where left and right hand derivative exist but are
not equal) then the Fourier series of f(x) is convergent and the sum of
the series is f(x), except at point x0 where f(x) has jump
discontinuity and the sum of the series is the average of left hand and

right hand limit of f(x) at x0, that is
f(x+

0 ) + f(x−

0 )

2
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Fourier Series

Fourier Series of any period p = 2l

The function f(x) with period p = 2l has the Fourier series

f(x) = a0 +
∞∑

n=1

(

an cos
nπ

l
x + bn sin

nπ

l
x
)

where a0 =
1

2l

∫ l

−l

f(x)dx

an =
1

l

∫ l

−l

f(x) cos
nπx

l
dx, n = 1, 2, · · ·

an =
1

l

∫ l

−l

f(x) sin
nπx

l
dx, n = 1, 2, · · ·
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Fourier Series

Example 23

Find the Fourier series expansion of

f(x) =

{
0 −2 < x < 0
1 0 < x < 2

Here l = 2. With p = 2l, we have

a0 =
1

2

[∫ 0

−2

0dx +

∫ 2

0

xdx

]

= 1

an =
1

2

∫ 2

0

cos
nπx

2
dx = 0, n = 1, 2, · · ·

bn =
1

2

∫ 2

0

sin
nπx

2
dx =

1 − (−1)n

nπ
, n = 1, 2, · · ·

Thus, the Fourier series is given by

f(x) =
1

2
+

2

π

∞∑

n=1

1

2n − 1
sin(2n − 1)π

x

2
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Fourier Series

Half Range Fourier Expansions

Theorem

If f(x) is integrable on the interval [−l, l], then

If f(x) is even then its Fourier series contains only cosine terms

and the coefficients are given by

a0 =
1

l

∫ l

0

f(x)dx, an =
2

l

∫ l

0

f(x) cos
nπx

l
dx, n = 1, 2, · · ·

bn = 0

If f(x) is odd then its Fourier series contains only sine terms and

the coefficients are given by

a0 = an = 0

bn =
2

l

∫ l

0

f(x) sin
nπx

l
dx, n = 1, 2, · · ·
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Fourier Series

Example 24

Find the Fourier sine series of the function f(x) = x, 0 ≤ x ≤ π.

For the Fourier sine series, we extend the function f(x) = x for
0 ≤ x ≤ π as an odd function, i.e. f(x) = x, −π ≤ x ≤ π which is a
2π periodic.

Then its Fourier series is given by

x = 2

(

sin x − sin 2x

2
+

sin 3x

3
− · · ·

)

, 0 ≤ x ≤ π
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Fourier Series

Example 25

Find the Fourier cosine series of the function f(x) = x, 0 ≤ x ≤ π.

For the Fourier cosine series, we extend the function f(x) as an even
function with period 2π

f(x) =

{
x −π ≤ x ≤ 0
−x 0 ≤ x ≤ π

Since it is an even function a0 =
1

π

∫ π

0

xdx =
π

2
,

an =
2

π

∫ π

0

x cos nxdx, n = 1, 2, · · ·

Thus, we get an =
2

πn2
(cos nπ − 1) =

2

πn2
((−1)n − 1)
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Fourier Series

Example 25

Thus, the Fourier series is given by

x =
π

4
− 4

π

(

cos x +
cos 3x

32
+

cos 5x

52
− · · ·

)

, 0 ≤ x ≤ π
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Summary

Summary

In this lecture we have discussed

Calculation Laplace transform using the definition.

Sufficient condition for the existence of the Laplace transform of
the function is the function should be piecewise continuous and of
exponential order.

Properties of the Laplace transform of the functions.

Unit step function, Dirac’s delta function and convolution
theorem.

If a function is periodic with period a then the Laplace transform

of this functions is
1

1 − e−as

∫ a

0

e−stf(t)dt.

Laplace transform can be used to solve the initial value problems
using the Laplace transform of derivatives.

Expansion of the periodic function in terms of Fourier series.
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UNIT – IV
Fourier Transforms



Fourier series

To go from f(q ) to f(t) substitute

To deal with the first basis vector being of 
length 2p instead of p, rewrite as
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Fourier series

The coefficients become
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Fourier series

Alternate forms

where
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Complex exponential notation

Euler’s formula )sin()cos( xixeix � 

Phasor notation:
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Euler’s formula

Taylor series expansions

Even function ( f(x) = f(-x) )

Odd function ( f(x) = -f(-x) )
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Complex exponential form

Consider the expression
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Since an and bn are real, we can let
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Complex exponential form

Thus

So you could also write
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Fourier Integrals

• For non-periodic applications (or a specialized Fourier series 
when the period of the function is infinite: LÆ∙)
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Fourier Cosine & Sine Integrals
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f10 integrate from 0 to 10
f100 integrate from 0 to 100
g(x) the real function



Similar to Fourier series approximation, the Fourier integral 
approximation improves as the integration limit increases.  It is 
expected that the integral will converges to the real function 
when the integration limit is increased to infinity.

Physical interpretation: The higher the integration limit means 
more higher frequency sinusoidal components have been 
included in the approximation.  (similar effect has been 
observed when larger n is used in Fourier series 
approximation)  This suggests that w can be interpreted as the 
frequency of each of the sinusoidal wave used to approximate 
the real function.
Suggestion: A(w) can be interpreted as the amplitude function 
of the specific sinusoidal wave.  (similar to the Fourier 
coefficient in Fourier series expansion)



Fourier Cosine Transform
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Fourier Sine Transform
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Fourier transform

We now have

Let’s not use just discrete frequencies, nw0 , 
we’ll allow them to vary continuously too

We’ll get there by setting t0=-T/2 and taking 
limits as T and n approach ∙
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Fourier transform
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Fourier transform

So we have (unitary form, angular frequency)

Alternatives (Laplace form, angular frequency)
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Fourier transform

Ordinary frequency
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Fourier transform

Some sufficient conditions for application
Dirichlet conditions

f(t) has finite maxima and minima within any finite interval

f(t) has finite number of discontinuities within any finite 
interval

Square integrable functions (L2 space)

Tempered distributions, like Dirac delta
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Fourier transform

Complex form – orthonormal basis functions for 
space of tempered distributions
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Convolution theorem

Theorem

Proof (1)
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