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Directional Derivative



-ecﬂonaFDerivaﬁve

You are standing on the hillside represented by z = f (x) in
Figure 13.42 and want to determine the hill’s incline toward
the z- axis.

Surface: ‘
2S5V

Figure 13.42



-ectional Derivative

You already know how to determine the slopes in two
different directions—the slope in the y-direction would be
given by the partial derivative f (x, y), and the slope in the x-
direction would be given by the partial derivative 1, (x, y).

In this section, you will see that these two partial derivatives
can be used to find the slope in any direction.



.~ Directional Derivative

To determine the slope at a point on a surface, you will
define a new type of derivative called a directional
derivative.

Begin by letting z = f(x, y) be a surface and P(x,, y,) be a
point in the domain of f, as shown in Figure 13.43.

The “direction” of the directional

derivative is given by a unit vector |
u=cos @i+ sin 0] :

where 6 is the angle the vector %\‘* s

makes with the positive x-axis. ' 4

Figure 13.43



-ectional Derivative

To find the desired slope, reduce the problem to two
dimensions by intersecting the surface with a vertical plane
passing through the point P and parallel to u, as shown in
Figure 13.44.

Surtace |

This vertical plane intersects the ;
surface to form a curve C. reiiec) L - e

r?(LEﬂL\H

The slope of the surface at it
(X0, Vo, f(Xq, Vo)) in the direction S
of u is defined as the slope of
the curve C at that point.

Figure 13.44



-ectional Derivative

Informally, you can write the slope of the curve C as a limit
that looks much like those used in single-variable calculus.

The vertical plane used to form C intersects the xy-plane in a
line L, represented by the parametric equations

X=X, +1lcos 6 and y=Yy,ttsin6
so that for any value of t, the point Q(x, y) lies on the line L.

For each of the points P and Q, there is a corresponding
point on the surface.

(Xg, Yo, f(Xos ¥o)) Point above P
(x, y, f(x, y)) Point above Q



-ectionaFDerivative

Moreover, because the distance between P and Q is

Vix = xy)? F (v — y)° = Vlrecos @)% + (¢ sin 6)°

you can write the slope of the secant line through
(X01 in f(X01 yO)) and (X! _V, f(Xa y)) as

e ) — [l yo) Ly + teos By oesing) — [y, v
f I '

Finally, by letting t approach 0, you arrive at the following
definition.



-ectionaFDerivative

Definition of Directional Derivative

Let 1 be a function of two variables x and v and let u = cos #i + sin #j be a
unit vector. Then the directional derivative of f in the direction of u, denoted
by £, f. s

flX -+ rcos 8. v+ 1sin #) — flx, v)
!

D, flx, y) = lu'ﬂ

provided this limit exists,

Calculating directional derivatives by this definition is similar

to finding the derivative of one variable by the limiting
process. A simpler “working” formula for finding directional
derivatives involves the partial derivatives f, and f, .

10



-ecﬁonaFDerivaﬁve

THEOHREM 13,9 Directional Derivative

If fis a differentiable function of x and v. then the directional derivative of fin
the direction of the unil vector n = cos #1 + sin #j is

D fixcy) = flx, y) cos 8 =+ [ (x.y) sin 6,

11



-ectionaFDerivaﬁve

There are infinitely many directional derivatives of a surface
at a given point—one for each direction specified by u, as
shown in Figure 13.45.

The vectoru

Figure 13.45
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-ecﬁonaFDerivaﬁve

Two of these are the partial derivatives f, and f,.

1. Direction of positive x-axis (# = 0k u = cos 0i + sin0j = i
Difly. v) = £l y) eos (0 + flx v) sin Q) = filx. y)

: - : =3 = 7l _ .
2. Direction of positive y=axis (0 = m/2): u = cos =i + ‘HH—J ==

J-l-
sm—

- T , . . ;
Dij-f._r. ¥l = flxy) msf + AN ¥ sin *;' =[x, v

13



-mple 1 — FInding a Directional Derivative

Find the directional derivative of

_f'[l} 1'} — 4 — 1_1 _ %}13 Surliee

at (1, 2) in the direction of

/ it A
u = [cos— i sin = JJ. LYireoting

14



-ample 1 — Solution

Because f, and f, are continuous, fis differentiable, and
you can apply Theorem 13.9.

Do fle vl = fla, v) cos /- [l v) sin #
e XY
(—2x) cos 0 ( 2:) sin

Evaluating at = /3, x =1, and y = 2 produces

P 5 3 it
DAL= (=2) =]+ (= 1) 5 |

-l Ty / N
= — ’;‘ | ‘./-\ll_.‘l
= — |.866, See Figure 13.46. Ao =S ( =
Y
Figure 13.46
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The Gradient of a Function of Two
Variables

16



- Gradient of a Function of Two Variables

The gradient of a function of two variables is a vector-valued

function of two variables.

Definition of Gradient of a Function of Twe Variables
Let 2 = flx, v) be a function of x and v such that f, and £, exist. Then the
gradient of £, denoted by Vf(x, v). is the vector

Vil y) = flx vii + f (v v)j

(The symbol Vfis read as “del £7) Another notation for the gradient is grad
flx, v}, In Figure 1348, note that for each (x, v), the gradient Vfix, v) is a
vector in the plane (not a vector in space).

17



- Gradient of a Function of Two Variables

-

v i v

- ————t. ——
//’.Va \: s - b |
v.'/ t. 3 )
JVGX (PR Y
~
”~

4

The gradient of [ isa veotor i the
av-pline.

Figure 13.48
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-mple 3 — Finding the Gradient of a Function

Find the gradient of f(x, y) = y In x + xy? at the point (1, 2).

Solution:

Using
fly vl = Ay 2 and fle.y)l = Inx + 2xy
HE 7

you have
Vite. y) = (— +y- ) + (Inx + 2.

X
At the point (1, 2), the gradient is

Tﬂlfml(l _|_‘r) + a1 =+ 2(10(2)]j

= 6i + 4j.
19



- Gradient of a Function of Two Variables

Because the gradient of fis a vector, you can write the
directional derivative of fin the direction of u as

D, flx, v) = [filx, Wi + f(x ¥)j] - [cos 8 + sin 8]

In other words, the directional derivative is the dot product of
the gradient and the direction vector.

THEOREM 1210  Alternative Form of the Directional Derivative
If f 15 a differentiable function of x and v, then the directional derivative of [ in
the direction of the unit vector a is

D, flx.v) = Vfix. y) » .

20




-ple 4 — Using Vi(x, y) to Find a Directional Derivative

Find the directional derivative of
f(x, y) = 3x? — 2)?
at (—17.0) in the direction from P{—7. 0) to 0(0. 1),

Solution:

Because the partials of f are continuous, fis differentiable
and you can apply Theorem 13.10.

A vector in the specified direction is

PO =y = ((] + %): + (1 — O

21



-ample 4 — Solution

cont’d
3 L] + +#
= —1
1 J
and a unit vector in this direction is
¥ 3'—|-4' L it P direott Po
— 57 — — == i el L ddreotion il £
u ||‘| 5] _1__| Mt vedt 11 duie il P

Because Vf(x, y) = f(x, y)i + f(x, y)j = 6xi — 4yj, the gradient
at(—%.0)is

3 L [ 3
Tf( = i}) —:ji + (). Limutientac | - =41

22



‘mple 4 — Solution

cont’d

Consequently, at ( 1. 0) the directional derivative is

(-— o) = vy -3 uj :
D, f ) kf( )
9 Ay, 4
~(-51+ ) (§145)

27

- —— UHEe Lt Moiiwilive wl =30

10
See Figure 13.49.

Figure 13.49 23



Applications of the Gradient
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-:)Tlcaﬁons of the Gradient

THEOREM 1211  Properties of the Gradient
Let f be dilferentiable at the point (x. y).

L I Nfx, vl =0, then O, flx, vI = 0 forall u.
2. The direction of maxinuem increase of fis given by Vf{x, v). The maximum
vilue of D flx. ¥) is

“\"ﬂr }E}H_ Maxemum vidue of f v w2

3. The direction of minimum increase of fis given by —V{(x, v). The minimum
value of D, flx, v) is

= |!Tf{1' }‘}ll. Maniminah sadue of L) f vl

25



-nple 5 — Finding the Direction of Maximum Increase

The temperature in degrees Celsius on the surface of a
metal plate is

T(x, y) = 20 — 4x2 — y?
where x and y are measured in centimeters. In what direction

from (2, —3) does the temperature increase most rapidly?
What is this rate of increase?

Solution:
The gradient is

VI, y) = T Y+ 1(x, y)j
= —8x1 — 2})).

26



-ample 5 — Solution

cont’d

It follows that the direction of maximum
Increase Is given by

VT(2, =3) = —16i + 6]

as shown in Figure 13.51,
and the rate of increase is

IVT(2, =3)|]| = 2356 + 306
= /292

= |7.09" per centimeler.

L] curups
"l .9 )= ,'“ - ,"‘:

I birestion en most rapel eneredae it

peruture pr (2 Fhsadsen by 161

Figure 13.51

l'vj
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-:)Tlcaﬁons of the Gradient

THEOREM 1312 Gradient Is Normal to Level Curves

If fis differentiable at (3. v,) and Vi{x,, v,) = 0. then Vf{x,. v;) is normal to the
level curve through (x,, v,).

28



-nple 7 — Finding a Normal Vector to a Level Curve

Sketch the level curve corresponding to ¢ = 0 for the function
given by f(x, y) = y — sin x and find a normal vector at several
points on the curve.

Solution:

The level curve for ¢ = 0 is given by
O=y-sinx
y =sin x

as shown in Figure 13.53(a).

The surface is wiven by (¥ — v — sin oy,

Figure 13.53(a)

29



-ample { — Solution

cont’d

Because the gradient vector of fat (x, y) is
VX, y) = £(x, y)i + (X, y)]
= —Ccos Xl + ]
you can use Theorem 13.12 to conclude that Vf(x, y) is
normal to the level curve at the point (x, y).
Some gradient vectors are

VA—m0) =i+

( 20 3\ 1.

TI(—l-—j)=;l+J
?f'(—’—f-—l)ﬂ

30



‘mple { — Solution

i3
m Vo I.
"Ff(—j,— ):_El+j

cont’d

2
VAD.O) = —i + j
N T u"fg 1, ¥ Giradient 1s
Ff(?. 2 ) m El il j A normil 1o the

leval crve.

w(31) =1 <
These are shown in
Figure 13.53(b).

(h) The leviel curve is given by flx 3] = (.

The level curve 1% eiven by flx, v = 0

Figure 13.53(b)

31



Functions of Three Variables
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-1cﬁons of Three Variables

Directional Derivative and Gradient for Three Variables

Let f be 4 function of x. v. and z. with continuous first partinl dervatives. The
directional derivative of fin the direction of a unit vector

u=ai+bj+ck
is given by

D, flx. .2} = af {x. y.2) + Bffx. y.2) + of a3 z).
The gradient of [ is defined as

Vit v.2) = flu y,2)i + filx, v 2)j + Ly v, 2k
Properties of the gradient are as lollows.
D v.2) = Vfixy.2) - u
IFVfle. v.2) =0 then D, flx, v.2) = 0 for all u.

The direction of maxinmum increase of fis given by Vf(x. v. ). The maximum
value of D, flx. v. 2) is

fad Id
- vl

Hvﬂﬂ Y. 5]“- Mavimun calve of D fiy, v o)

4. The direction of minimum increase of fis given by — Vi(x, v, z). The
minimum value of D, flx, v, ) is

—IVF(x, ¥, .‘_,}H Minemain vadow of 8, /1, v, ¥)

33



-ple 8 — Finding the Gradient for a Function of Three Variables

Find Vf(x, y, z) for the function given by
fix,y,z)=x2+y2—4z

and find the direction of maximum increase of f at the point

(2,-1,1).

Solution:
The gradient vector is
VI, y, z) =[x, y, 2)i + 1(X, ¥, Z)j + (X, ¥, Z)k
= 2Xi + 2y] — 4K

34



‘WDIG—STSOIution

cont’d

So, it follows that the direction of maximum increase at
(2,-1,1)is
VA2, -1, 1) = 4i - 2] — 4k. See Figure 13.54.

V3=, Iyedi—2) =K

[evel surtict-and bradient veetor at
&=L “.f(u‘f(,t,},;) — = 4 ,l'.“ S E
Figure 13.54 35



- Curl and Divergence




- Curl

If F = Pi + Qj+ Rkis a vector field on [*and the partial
derivatives of P, Q, and R all exist, then the curl of F is the
vector field on [ defined by

. IR d0 ap R W dr
1 I.:uﬂFT(f‘ —r_“)i+(f_ = )j—k(r_t“—r )L—
— TAS th= LA oy A% oy

Let's rewrite Equation 1 using operator notation. We
introduce the vector differential operator V (“del”) as

37



- Curl

It has meaning when it operates on a scalar function to
produce the gradient of f:

() ¢l df (i ¢l ()
Yf =1 4, .I+f+|i+f=_—ji —f|+—f|\
ax (hy 0z ar th b=

If we think of V as a vector with components d/odx, d/dy, and

dloz, we can also consider the formal cross product of V
with the vector field F as follows:

i j kK

ol ol !

VXF=

ax dy oz
P 0 K

38



- Curl

1 10 i IR ) 0 dl
_ (er B _er)i = (i_ I,R)j N (rQ B t_P)-k
oy (= (= ox | ox A,

= Curl F

So the easiest way to remember Definition 1 is by means of
the symbolic expression

2 curl F=V XF

39



- Example 1

If F(x,v,z) = xzi + xyzj- y*k, find curl F.

Solution:
Using Equation 2, we have

i J k
d d d
curl F =V X F =| - - :
dx dy oz
Xz Xyz —Yy

40



Example 1 — Solution

.r*J' () )
[ == (o) — == (e} |
X oy

= (—=2y —ay)i—10 —x)j+{yz—0k

w2 +x)i+xj+yk

41



- Curl

Recall that the gradient of a function f of three variables is a

vector field on R*and so we can compute its curl.

The following theorem says that the curl of a gradient

vector field is 0.

partial dervatives, 1hen

|i] Theorem I 7 is o function of thres vaables (il bas continuons secand-order

curkN /1 =0

42



- Curl

Since a conservative vector field is one for which F = Vf,
Theorem 3 can be rephrased as follows:

If F is conservative, then curl F = 0.

This gives us a way of verifying that a vector field is not
conservative.

43



- Curl

The converse of Theorem 3 is not true in general, but the
following theorem says the converse is true if F is defined
everywhere. (More generally it is true if the domain is
simply-connected, that is, “has no hole.”)

i

| 4] Theorem H'F is & vector field delined on a1l of 4 whase component Tune-
tivns have continuous purtiol derivitives and corl B = 0. then F is o comservative
vetion ficld.

44



- Curl

The reason for the name curl is that the curl vector is
associated with rotations.

Another occurs when F represents the velocity field in fluid
flow. Particles near (x, vy, z) in the fluid tend to rotate about
the axis that points in the direction of curl F(x,y, z), and the
length of this curl vector is a measure of how quickly the
particles move around the axis (see Figure 1).

F

#
A el By

F

Figure 1 45



- Curl

If curl F = 0 at a point P, then the fluid is free from rotations
at P and F is called irrotational at P.

In other words, there is no whirlpool or eddy at P.

If curl F =0, then a tiny paddle wheel moves with the fluid
but doesn’t rotate about its axis.

If curl F # 0, the paddle wheel rotates about its axis.

46



Divergence

47



- Divergence

fF=Pi+ Qj+ RKkis a vector field on [¢*and oP/ox,
dQ/dy, and oR/oz exist, then the divergence of F is the

function of three variables defined by

Observe that curl F is a vector field but div F is a scalar

field.

i F

divF = — +

dx

i(hy

00 R

0z

48



- Divergence

In terms of the gradient operator
V = (dlox) i + (dlay) j + (dloz) k, the divergence of F can be
written symbolically as the dot product of V and F:

10 divF=V +F




- Example 4

If F(x,y, z) =xzi+ xyzj+ y?k, find div F.

Solution:
By the definition of divergence (Equation 9 or 10) we have

dvF=V-F

L , ! (l .
==—(%=) ——xNz) +——1—¥")
X Yy s

=Z+ XZ

50



- Divergence

If F is a vector field on R, then curl F is also a vector field
on R°. As such, we can compute its divergence.

The next theorem shows that the result is O.

F—

|11] Theorem [FF = Fi + Qj+ Rk lsuvector icld on £ and P, and & have
connnuous seennd-order partial derivarives, then

divicuel =10

Again, the reason for the name divergence can be
understood in the context of fluid flow.

51



- Divergence

If F(x, y, z) is the velocity of a fluid (or gas), then

div F(x, y, z) represents the net rate of change (with respect
to time) of the mass of fluid (or gas) flowing from the point
(x, y, Z) per unit volume.

In other words, div F(x, y, z) measures the tendency of the
fluid to diverge from the point (x, y, z).

If div F = 0, then F is said to be incompressible.

Another differential operator occurs when we compute the
divergence of a gradient vector field V.
52



- Divergence

If fis a function of three variables, we have

-| L]
£

| | it a°f il
div(Vf) =V - (Vf) = —L 4 2 2J

" - } gy o
(- oy~ iz”

and this expression occurs so often that we abbreviate it as
Vf. The operator

V=V.V

is called the Laplace operator because of its relation to
Laplace’s equation

-

'-\.2 il ri Ll
. o ()
‘F~;‘='—{+ Tl
' 0X~ ay- 0z

53



- Divergence

We can also apply the Laplace operator V* to a vector field
F=Pi+Qj+Rk
In terms of its components:

VF=V°Pi+V°Qj+V°Rk

54



“gral Calculus

Line, Surface and Volume Integrals

95



!e Integral

av

56
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"Surface Integral

vida flux , 2 i
:

dalisan infinitesimal patchof thesurface,

daisperpendicua tothispatch. :

For a given boundary line there many
different surfaces, on which the surface
integral depends. It is independent only if

o) Surlace

“Boundary line shrinks
dowi tay o pofat

If the surface is closed: ©

58



!mple

(2xzx (x 2)y y(z¢ 32)lda

exclude(wvi)

| |

w o) | T
2 2 y

X
(vi)




-Iume Integral

T(Xy,2)d d

dxdydz

60
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-jamental Theorem for Gradients

Generalization of work done by conservative force

b

/Tdr O

.

/Tldr T(b) T(a), ifa b o

aP P

o

The line integral does not depend on the path P.

Example : M echanicd work
b b
W Frdr

a a

11

Vidr V(b) V(a)

62



V(xyz) dr along path I, Il and 111




-jamental Theorem for Divergences

Gauss’s Divergence Theorem

vivd  ovida

V S

ﬁ\

The surtace S encloses the volume V.

64



(v)

2 'o{y A

— i

@ |6 (i)
1
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!mple

Z

(1v)

(1)

b A i
|
-
i)
1 Y

l {vi)

Check the divergence theorem for

vV oy (2xy Y)Y (2xy)2

66



-damental Theorem for Curls

Stokes” theorem

The path P 1s the boundary of the surtace S.
The integral does not depend on S.

67



dz
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SO GO 35

Q
G Gusdd yno

f (Vxwv)da

Surlive

s

di

|

You must do 1t in a consistent way!
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Figure 1.34

Check Stokes” Theorem for

70



THANRK YOU
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Objectives

After going through this unit the reader should be able to understand
the

o Calculation of Laplace transform, which include the existence of
the transform with some remarks on the theory.

o Properties of Laplace transform, transform of derivatives and
integrals and convolution theorem which are crucial in the
application of the method to the solution of ordinary differential
equations.

@ The use of unit step function as discontinuous forcing function
which is very common in science and engineering.

@ Dirac - Delta function ( concept of impulse, may be interrupted
as a force of very large magnitude applied for just an instant).

o Laplace transform of periodic functions.

o Use of Laplace transform to solve the certain type of differential
equations.

o Expansion of the periodic functions as a Fourier series.
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Laplace Transform

The Laplace transform of a function f(t) of a real variable ¢ and
o0
defined for ¢ > 0 is a function F(s) defined by F(s) = / e St f(t)dt

provided the integral exists and symbolically this is written as

L{f(8)] = F(s).




f(2) 1L[f (®)] i0) L]
1 778>0 sinat %,3>0
f s —;—a
t 52,s>0 cosat 52_1_7(12,5>0
T
g s:ﬁ, s>rO,njO,1,2,... sinh at ﬁ, s> |al
_'_
4 % cosh at ﬁ s> |l
1
et , S>a

s—a
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Existence of Laplace Transform

Here we discuss the condition of convergence of the improper integral

) b
/ e St f(t)dt = lim /0 e St f(t)dt (1)

0 b—oo

This integral converges whenever

/ S et plae 2)
0

converges and in this case we say that the integral (1) converges
absolutely and hence converges. If there exists a nonnegative function
o0

g(t) such that |e=5¢ f(t)| < g(t) and / g(t)dt converges, then by

comparison test, it is concluded that %1) converges. Moreover, the

function f(t) defined for all ¢ > 0 must be piecewise continuous on
[0, 00), i.e. the function f(t) is continuous over every finite interval
0 <t <b, except at a finite number of points where there are jump
discontinuity at which the left hand limit and the right hand limit

exist but are unequal.



Existence of Laplace Transform

The piecewise continuous function can be illustrated in the figure
given below.




Exponential order of f(t)

Apart from the piecewise continuity of f(t) for ¢ > 0, the other
assumption is that f(¢) is of exponential order.

Definition

A function f(t) on [0, 00) is said to be of exponential order if there
exist constants M and k such that

|f()] < M, t >0

The constant function, the function ", ef, sint, t"sint where n is a

positive integer are of exponential order whereas e’ is not of
exponential order.
Results: Let f be a piecewise continuous function on [0, c0) then

t
o f is of exponential order if for some constant « tlim [f(t)] =0
—00 ev
t
o f is not of exponential order if tlim [f(t)} = 00, for all real
—oo | e™

numbers «.



Example 1

Show that the function f(¢) = ¢™ is of exponential order.

If (¢) is of exponential order then we known that for every a > 0

Hence for every given e there exists some constant ¢ > ¢y such that

n

—O‘<ef0rallt>t0

eat

Since t" is bounded on [0, o], this implies that [t"| < Me** for
t >0, > 0 on taking € = 1.
Hence by the definition ¢™ is of exponential order.



Existence of Laplace Transform

Let f(t) be a piecewise continuous function on every finite interval
t > 0 and of exponential order. Then there exist a real number k such
o0

that/ e ' f(t)dt converges for s > k.
0




Example 2

Show that the Laplace transform of f(t) = ¢t~'/? exists, even though it
has the discontinuity of infinite order at ¢t = 0.

Since f(¢) has the discontinuity of infinite order at ¢ = 0, which is
different from piecewise continuity. By definition of Laplace
transform, we get

L[t™Y?] = / e St
0

On substituting st = x, we get

L[til/z] _ /OOO e~ <£>_1/2dx: r(1/2) _ \\/fj

S
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Properties of Laplace Transform

In this section we discuss the following important properties of
Laplace transform which are useful to find an easiest way of
computing the Laplace transform without using the definition.

o Linearity of Laplace Transform
o First Shifting Theorem

o Multiplication by t™

o Division by ¢



Laplace Transform

Linearity of Laplace Transform

If L[f(t)] = F(s)and L[g(t)] = G(s), then for any constant a and b
Llaf(t) +bg(t)] = aL[f ()] + bL[g(1)] = aF(s) + bG(s)
Example 3. Find the Laplace transform of f(t) = (¢t —1)? +sint
using the linearity property.
L[(t —1)* +sint] = L[t> — 2t + 1 +sint]
= L[f(t)] = L[t?] — 2L[t] + L[1] + L[sint]

2 2 1 1



First Shifting Theorem

If L[f(t)] = F(s), s> k, then e f(¢) has the transform
F(s—a), s—a >k that is

Lle* f()] = F(s — a)

Example 4. Find the Laplace transform of e (t — 1)2.

2
Ll(t—1)?=L[t*? -2t +1]= = — = + -
(-1 = LP — 2t +1] = 5 - 5+

Thus,

Lle®(t —1)%] =




Multiplication by t"

If Lf(t)] = F(s), then
L[t" f(£)] = (=1)"F"(s)

where F"(s) is the n'” differentiation of the transform with respect to
5.

Example 5. Find the Laplace transform of ¢ cosh 2t.

s
2 —4

Let f(t) = cosh2t, then L[f(t)] =

Thus,

5 _(-1)2? s 253+ 24s
L[t® cosh 2t] = 752 2-4) " (2—ap §>2



Division by ¢

If L[f(t)] = F(s) and tlim fgt) exists, then

—0

L{%ﬁ}—le@M§

provided the integral on the right hand side exists.

int
Example 6. Find the Laplace transform of %

. - .
L {S't"t] :/S F(3)ds, where F(3) = Lisint] = 5~

Thus,
sint < 1 . m 1
L[ ‘ ]:/ @yl =g e
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s & Integrals

Laplace Transform of Derivative

Theorem

If f(t) is continuous for t > 0 and of exponential order and also f’(t)
is piecewise continuous and of exponential order for t > 0 then

LIf'(B)] = sLf(t) — f(0)]

Similarly, if f(t), f'(t), £ (t),--- , f*(t) are continuous for all
t > 0 and of exponential order and f"(t) is piecewise continuous and
of exponential order. Then

LU(0)] = "L (E)] = 5" £(0) = 5" 2£(0) — -+ — /()




s & Integrals

Example 7

Using the Laplace transform of the derivatives find the Laplace
transform of f(t) = sint.

We have f(t) =sin®t = f'(t) = 2sintcost = sin2t. Also f(0) = 0.
LIf'(0)] = sLf()] = f(0) = Llsin2t] = sL[f(t)] - 0

5 2
a7 =L = L) = 214



Integrals

Laplace Transform of Integrals

Theorem

If L[f(t)] = F(s) and f(t) is piecewise continuous function of
exponential order, then

L [/Otf(u)du] - Fis).

In general,

. /ot/ot"‘/otf(u)dudu...du _F(s)

Sn

n—times




& Integrals

Example 8

t
Find the Laplace transform of / et costdt.
0

1
We know that L[e™ " cost] = (Jf:—w (Using the first shifting
s
theorem)
t
F
Thus, L [ / f(u)du] _ F)
0 S
Hence L [/t e " cos tdt} s+
0 Cosl(s+1)2+1]
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ta Function

Unit Step Function

Definition

The unit step function u(t) is defined by

0 ift<0
“(t)_{ 1 ift>1

where 0 is the point of jump discontinuity. This function is also
known as Heaviside function. If the jump discontinuity is at a point
t = a > 0, then the unit step function u(t — a) or u,(t) is defined by

1 ift>a

u(ta):{ 0 ift<a




Transform &
Step Function & a a Function

Graph of Unit Step Function

The Unit step function can be plotted as

o il

i i 1l



Transf z P

inction & Dirac Delta Function

Second Shifting Theorem or T-Shifting

Let f(t) be piecewise continuous function and of exponential order and

if L[f(t)] = F(s), then
L{u(t —a)f(t —a)] = e **F(s)

Example 9. Find the Laplace transform of e!=3u(t — 3).
On comparing e!3u(t — 3) with f(t — a)u(t — a), we get that

Lle!=3u(t — 3)] = e 3*F(s), where F(s) = L[f(t)] and f(t) = €’ so
F(s) =

s—1
Thus,




lta Function

Example 10

Express the following function in terms of unit step function and then
find the Laplace transform

2t ifo<t<w
f(t)_{ 1 ift>n

We can write the function f(t) as

f(t) = 2t[u(t — 0) — u(t — m)] + Lu(t — 7)]
Thus, we get f(t) = 2tu(t) — 2(t — m)u(t — 7) — (27 — Du(t — 7)

On taking the Laplace transform on both sides and using the second
shifting property we get

L) =5 25 —er-1"



ta Function

Unit Impulse Function or Dirac Delta Function

Definition

The unit impulse function or Dirac Delta function is given by
ot —a)= ]!imo frx(t — a), where

[ 1/k fa<t<a+k
fi(t —a) = { 0 otherwise

Thus,
x ift=a

8(t—a)= { 0 otherwise

and / 0t —a)dt=1
0

Remark. The function §(¢ — a) is zero everywhere except at a single
point but the integral of this function from 0 to oo is one, while in
calculus integral of such functions are zero.



lta Function

Laplace Transform of Dirac Delta Function

Since / ; )
[ 1k fa<t<a+
Ji(t —a) = { 0 otherwise

Thus it can be written in terms of unit step function as
1
filt = a) = Zlu(t — a) = u(t — (o + }))

Taking Laplace transform on both sides

LIfi(t — a)] = %[L[U(t —a)] = L[u(t = (a + K))I] =

1 [e—os ef(a+k)s s 1— e ks
— —_—— = e

k s s ks

To find the Laplace transform of Dirac Delta function take the limit
k — 0. Thus, L[6(t — a)] = e~**. In particular L[§(¢)] = 1.



Transform & F

inction & Dirac Delta Function

Example 11

Find the Laplace transform of #?u(t — 1) + §(t — 1).
L[t2u(t — 1)+ 8(t — 1)] = L[(t — 1 + 1)?u(t — 1) + L(t — 1)]
= L[(t — 1)?u(t — 1)] + 2L[(t — 1)u(t — 1)] + L{u(t — 1)] + L[5(t — 1)]

g2 26_5 e *®
=e ?-i- ST+

+e ?

e—S
= ?[2—1—284-82—}—83]
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unc

Convolution of Functions

Let f(t) and g(t) be the functions defined for ¢ > 0. Then the
convolution of f(t) and g¢(t) is defined by

(fxg)= /f g(t—7)dr, t >0

M For example the convolution of
3t and sin 4t is

¢
= ] e3t*sin4t:/ e3tsin4(t—7')d7'.
0




z Fo
of Functions

Convolution Theorem

If L[f(t)] = F(s) and L{g(t)] = G(s), then
L[f * g = LIf($)]L[g(?)]

Example 12. Find the Laplace transform of ¢ x e?*.

1 1

L[t x e™] = L[t]L[e"] = ;12 “s—a  (s—a)



Error Function

Definition
Error function is defined by

t
erf(t) = %/0 e " dx

Naturally, the complementary error function is

erfe(t)=1—erf(t) = % /OO e da.
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Laplace Transform of Periodic Function

Definition

A function f(¢) is said to be periodic if f(t + a) = f(t) for all values
of a. The number q is called the period of f(t).

i) Sawtoothwave function

t if0<t<a
| | 1) = { f(t+a) otherwise
ii) Squarewave function

el [k if0<t<a
| ; f(t)_{k ifa<t<2a



ction

Laplace Transform of Periodic Function

If f(t) is piecewise continuous function and of exponential order and
periodic with period a. Then

L0 = s [ e f0)




Function

Example 13

Find the Laplace transform of the function

1 ifa<t<g
f(t) =

~1 ifg<t<a

L0 = (= | [ s

- 1% [ /0 e f(t)dt - / e‘%(t)dt}

= ﬁ |14 e = 27|
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Inverse Laplace Transform

If L[f(¢)] = F(s), then the function f(t) is called the inverse Laplace
transform of F'(s). In symbolic way, we write

If L[f(t)] = F(s) then f(t) = L~[F(s)]

Some of the standard results are given below

(1

o L1 7] =1
K

R I A I

o ! 1 =2
s—a

o L1 %] = cosat
s a

) L_l %] :Sinat
s a



place Transform

Some More Important Results

Some more results using the properties of Laplace transform are given
below

If L7[F(s)] = f(t), then
o L7YF(s—a)] =ef(t)
o LTHF™(s)] = (=1)""f(t)

Lt [/OO F(3)ds :@
e
L7em®F(s)] = u(t — a)f(t — a)

]
LTHF()G(s)] = f(2) = 9(t)



Example 14

2
Find the inverse Laplace transform of L
2 —4s+13
Since s+ 2 s+ 2 s—2+4
11 = =
—4s+13  (s—2)2+32  (s—2)2+32
Thus,

4
= ¢? cos3t+3e sin 3t



Example 15

Find the inverse Laplace transform of 2;
(s? —1)2
Si s 1 N 1
ince =—
(s —1)2 4(s+1)2  4(s—1)

Al el
1

1
t —t
= ——e.t+ —t.
3¢ 2"€

t t
= Z( t_e_t): ESInht



Example 16

1+s

Find the inverse Laplace transform of log

1+s

Let L |log } — f(#). Thus, F(s) = log ~*
We know that
d d
Litf ()] = — - F(s) = — - [log(1 + 5) — log s]
_ + o —Lle™"+ L[1] = L[1 — e ]
- 14s s

1—et
t

=>tf(t)=1—-e"' = f(t)=



Example 17

Using the convolution theorem find the inverse Laplace transform of

82 S S

Frap (8 (F )
By convolution theorem we have L™1[F(s)G(s)] = f * g. Here,

F(s) = G(s) = ﬁ Thus,

s s s s
L—l .2 | = L—l 2 L—l
{52+4 32+4} Lz+4}* s2+4

¢
= cos 2t x cos 2t = / cos 2u cos 2(t — u)du
0

1/t 1
=5 / [cos 2u + cos(4u — 2t)]du = Z[Qt cos 2t + sin 2t]
0



Example 18

2 2 —2s 4 —2s
Find the inverse Laplace transform of — — 672 _
S S S

2 Qe 4e 2 2 2e~2s 4e—2s
1|« <« _r-1|4c| 71 -1
v E- et e [ e B e ]

Using the second shifting property in inverse form i.e.
L7 Ye=*F(s)] = u(t — a)f(t — a) for second and third term in the
above equation we get

=2t — 2(t — 2)u(t — 2) — du(t — 2) = 2t — 2tu(t — 2)

Hence

2t 0<t<?2
f(t)_{ 0 t>2
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gral Equations

Solution of Differential Equations

Consider the initial value problem

v+ py + qy = r(t), y(0) =yo, y'(0) = y(; where p, ¢ are constants.

To find the particular solution of this differential equation, apply Laplace
transform on both the sides of this equation to obtain

L{y"] + pL[y'] + qL[y] = L[r(t)]
= s*L[y] — sy(0) — ¥'(0) + p[sL[y] — y(0)] + ¢L[y] = R(s), R(s) = L[r(t)]
Simplifying, we obtain

R(s) + (s + P)yo + o
s>+ ps+q

Lly] =
Since the RHS is a function of s, thus, we obtain

_1 | R(s) + (s +p)yo + ¥o

=1L
y(t) P Sv——

Here it has been assumed that the Laplace transforms of r(t),y,y’, y”
exist.



Integral Equations

Example 19

solve the differential equation y” +4y’' +3y = e~ t, y(0) = 1, v/(0) = 1.
On taking Laplace transform on both the sides, we obtain

s?L[y] — sy(0) — /(0) + 4[sL[y] — y(0)] + 3L[y] = L[e™"]

1
(s2+4s+3)L[y]:s+1+4s+87

+1
s> +6s5+6
Lyl = ——— 1~
= L= i 19
L[ s#46s+6 1 [ 7 P S
v= (s+1)2(s+3)] 45+1 " 2(s+1)2 4(s+3)

7 1 3
_ Ze_t + Ete_t _ 16—31:



gral Equations

Integral Equations

Definition
t
The equation f(t) = y(¢) +/ y(u)g(t — u)du is called the integral

0
equation in which the function y(t) is unknown.

This equation is of special form because the integrand is the
convolution of two functions and we solve this equations by means of
Laplace transform.

LIf(8)] = Lly()] + LIy(D)]LLg(?)]

_ L[ (@)]
ly] = T[g(t)]



ntegral Equations

Example 20

t

Solve the integral equation y(t) = t* + / y(u)sin(t — u)du.
0

Applying Laplace transform on both the sides,

Lly) = L[*] + Lly(t)] Llsin¢]
L[] 3 /s +1
Lyl = 1—Llsint] s* ( s2 )
3t 3

st

56
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rm & Fourier

Introduction

Definition

A function f(z) is said to be of period p if
flz+p) = f(z)

v
Definition

A function f(z) defined on any symmetrical placed interval about
origin is said to be even if

and is said to be odd if

\




1 & Fourier

Properties of Even & Odd Functions

The product of even and odd functions have the properties

o (even)(odd)=(odd)(even)=odd and
(even)(even)=(odd)(odd)=even

o if f(x) is odd, ' f(z)dx =0

—a

o if f(x) is even, ’ f(x)dx = 2/a f(x)dx
—a 0



rm & Fourier

Fourier Series

Definition

The series

f(z)=ao+ i(an cos nx + by, sinnx) (3)
n=1

with period 27 is called Fourier series if
1 T
a0 = 5 » f(z)dz
1 s
ap = — f(z)cosnzdr, n=1,2,---
0

bn*f/ f(x)sinnzdz, n=1,2,---
T




Example 21

Find the Fourier series of the function
f(x):x, —7T§.’L’§7T7f($+ﬂ'):f($).
1

Here, ag = > f(x)dz =0
)7

1 s
ap = 7/ rcosnrdr =0

—T

1 [7 2 (7
b, = f/ rsinnrdr = f/ rsinnrdx
™ T ™ Jo

2 2
—Z cosnm = =(—1)"*!. Thus, we get
n n

sin 2x n sin3z
2 3

x=2 (sin x — — - ) which is the required series.



Here, aq — % UO (~1)de + /Ow(l)dx} —0

-

10 17
an = 7/ (= cosnz)dx + 7/ (cosnz)dr =0
™ ™ Jo

-

10 1 ("
Similarly, b, = = / (—sinnz)dz + — / (sinnz)dx
. © Jo

-7

1
= —[cos 0 — cos(—nm) — cos(nm) + cos 0]
nm

= %(1 —cosnm) = %(1 (-1
4

Thus, bap, =0, bap—1 = m

Fourier series is given by

, n=12,-- and the corresponding

4 (. sin3z  sin5z
f(m)-;(sm,l,—&- 3 + 5 —|—)



Convergence and Sum of Fourier Series

If f(x) is piecewise continuous function in the interval —r <z <7
with period 27 and also piecewise smooth (function f(z) is said to be
piecewise smooth if it is differential on the interval, except a finite
number of points where left and right hand derivative exist but are
not equal) then the Fourier series of f(z) is convergent and the sum of
the series is f(z), except at point zo where f(z) has jump
discontinuity and the sum of the series is the average of left hand and
flzg) + f(q)

right hand limit of f(x) at xg, that is 5



Fourier Series of any period p = 21

The function f(z) with period p = 2 has the Fourier series

—ao—i—Z(ancos T+ by, sm?m)

1 l
where ag = Z/ f(z)dx
-1

!
= %/ f(x)cosnlﬂdx, n=12--
-1

1 l
:7/ f(:v)sinnlixda:7 n=12--.
-1



Example 23

Find the Fourier series expansion of

0 —2<x2<0
f(w)_{ 1 O<z<?2

Here | = 2. With p = 2[, we have

1 0 2
aoz{/ Odw—i—/ xdx}zl
2 1) 0

1 (2
an:f/ coswdx—o n=12,-
0 2

2
12 1—(-1)"
bn:f/ sinmmd:c: (=1) ,m=1,2,---
2 0 2 nm
Thus, the Fourier series is given by

sm (2n — 1)



rm & Fourier

Half Range Fourier Expansions

If f(z) is integrable on the interval [—1,1], then

o If f(x) is even then its Fourier series contains only cosine terms
and the coefficients are given by

1 [ 2 !
aozi/f(x)da?, anzf/f(x)coswd% n=12-.
l 0 l 0 !
b, =0

o If f(x) is odd then its Fourier series contains only sine terms and
the coefficients are given by

apg=a, =0

2 l
bnzj/f(x)sinnlﬂdx, n=12,
0




> Transform & Fourier S

Example 24

Find the Fourier sine series of the function f(z) =2, 0 <z <.

For the Fourier sine series, we extend the function f(z) = z for
0 <z <7 as an odd function, i.e. f(z) =2, —7 <z < 7 which is a
27 periodic.

Then its Fourier series is given by

. sin2x  sin3x
r=2|sinz — + - ],0<8z< T

2 3 -

.



Example 25

Find the Fourier cosine series of the function f(z) =z, 0 <z <.

For the Fourier cosine series, we extend the function f(z) as an even
function with period 27

f(x):{ r —7<z<0

—x 0<z<n

. - . 1 /" T
Since it is an even function ag = — xdr = >
T Jo

™

2 ™
anp = — rcosnxdx, n=1,2 ---
0

(cosnm —1) = i((—l)" -1)

™2

Thus, we get a, = —
™



rm & Fourie
Four es

Example 25

Thus, the Fourier series is given by

T 4( cos3z  cosbx
coszx +

il = e ) 0SS

3 =

1
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Laplace Transform & Fourier

Summary

Summary

In this lecture we have discussed

Calculation Laplace transform using the definition.

Sufficient condition for the existence of the Laplace transform of
the function is the function should be piecewise continuous and of
exponential order.

Properties of the Laplace transform of the functions.

Unit step function, Dirac’s delta function and convolution
theorem.

If a function is periodic with period a then the Laplace transform
1 a
of this functions is ——— / e St f(t)dt.
]. — e~ as 0
Laplace transform can be used to solve the initial value problems

using the Laplace transform of derivatives.

Expansion of the periodic function in terms of Fourier series.
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Fourier Transforms
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- Fourier series

2
= To go from f(9) to f(t) substitute® -t o

o0

f (t)

no

a cos(nw,t) b, sin(na,t)

m To deal with the first basis vector being of
length 2r instead of &, rewrite as

f (t) %

o0

a cos(nw,t) b, sin(na,t)

n1i



P =

]
e

‘) Fourier series

m T he coefficients become

2

tg T

(t) cos(ka,t) ci

(t) sin(ka,t) at



A

iy
o Fourier series
*’Jﬂ”

e

m Alternate forms
& - b,
f(t) s nlan(cos(na)ot) ansm(na)ot))
% T a (cos(nat) tan( )sin(Net))
2 e (oostnag) )

n1il

mWwhere

H
c, Ja: b? and | tml@%

[ TTT ]
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‘0 Complex exponential notation

]
e

mEuler’s formula € cos(x) isin(xX)

.'lu o & T;‘ | .I B o -

Nk A Phasor notation:
X iy |2¢€

gin o

where| x* Yy
Jzz

JOxiy)(x iy)

and tan %X%

X0




o

‘w; Euler’s formula

m Taylor series expansions
! x> x X

e 1 X
2 3 4

m Even function ( f(x) = f(-x) )
X2
cos(x) 1

X4 X6 X8

| 2 4 6 8
= Odd function (f(x) =-f(-x) ) _
X

X" X

X5
Jd 3 n 9
6

sin(x) X

5 Xt x> x X x°ix!
e’ 1 IX —
2 3 4 5 4 7

cos(X) 1sin(x)




*”}fx

10 Complex exponential form

m Consider the expression

f(t) F g"« F_cos(na,t) iF, sin(nagt)

n 0 n o0

o0

(F, F )cos(hayt) iI(F, F  )sin(hat)

BS0 a F, F, and b i(F, F)
mSincea,and b, arerea, wecanlet F, F,
andget a, 2Re(F) and b 2Im(F)

Re(F.) % and  Im(F.) b—zn



:-__,.-'".--

Complex exponentia form

e

mTh EoN el N
= %g () oos(no)dt i [ ()sin(nat)dt

L] to to U
to T

— [ T(t)(cos(nawyt)dt 1sin(naw,t))dt

= ft)e ™™ dt

e

(Nt )

m So you could also write f(t) [1]Fe




*”Zf

"'\.\T

' Fourier Integrals

* For non-periodic applications (or a specialized Fourier series
when the period of the function isinfinite: L—o)
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© ] CNZX ] . [IN7zZX
fL() & []0a,cos0——0 b,sing—
- _ Nz
2 [ a,cswx Bsnwx ,w, =
n1l
D a, CoOS W_X bnsin W, X
no
n 1 n
Notethat: 4w w,, w ( )7 - =
B L L
f, (X)

1 " L ] L .
~ 1 oswx ) T ()cost v sinwx ' T, () sin(w, )

AsL -, w— 0,00 []() w—[{)dw



fL(x)

%nﬁo B:os W_X Wﬂ f_(v)cos(w, v)dv sin w X WELl f (v)sl n(wnv)dv%
1 = © g o0 .
= B:os wx [] f(v)cos(wv)dv sinwx [ f(v) sm(vw)dvgjw

OO[@&@ f (v) cos(wv)dv cos(wx) 1 ig (v) SIn(wy)dv Sin(wx) oe
o 7 P -

f(X) OODA(W)COS(WX) B(w)sin(wx) dw : Fourier integral of f(x)

where A(w) ij f (v) cos(ww)dv, B(w) = fg(v) sin(wv)dv
T T
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‘0 Fourier Cosine & Sine Integrals

If thefunction f(X) iseven 1 A(w) = f (v) cos(wv)dv
7T

& 0@)dv 1a)dv EOODf (v) cos(wv)dv
B(w)oo 0
f (X) OOQA(W) cos(wx)dw : Fourier Cosine Integra

If thefunction f(x) isodd [ B(w) s F(v)sin(wv)dv
T

o0

A(w) 0O, f(x) Eﬁ(w)sin(wx)dw: Fourier Sne Integra
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W Example

ol Afor-1 x 1
¥ T forx 1
00 1 .
AW) [ f(v)oosm)dv = [ooswdy 2SNW)
T 7T 1 W7
1° 1°
B(w) —[Tf(v)sin(w)dv —[sin(wv)dv O
4 1 T 1
TheFourier integd of f is
Q0 002 .
f0  TAW)cos(wx)dw S\'Ar/‘("") cos(WxX)dw
7T




1.5

0.5

f,o Integrate from O to 10
f100 INtegrate from O to 100
g(x) the real function




Similar to Fourier series approximation, the Fourier integral
approximation improves as the integration limit increases. Itis
expected that the integral will converges to the real function
when the integration limit isincreased to infinity.

Physical interpretation: The higher the integration limit means
more higher frequency sinusoidal components have been
Included in the approximation. (similar effect has been
observed when larger nis used in Fourier series
approximation) This suggests that w can be interpreted as the
frequency of each of the sinusoidal wave used to approximate
the real function.

Suggestion: A(w) can be interpreted as the amplitude function
of the specific sinusoidal wave. (similar to the Fourier
coefficient in Fourier series expansion)
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2 Fourier Cosine Transform

For an even function f(X) :

f(X) OOQA(W) cos(wx)dw, where A(w) EOODf (V) cos(wv)av.
0 a 0

Define A(w) \E f_(w)
T

f_(w) \/%A(w) \/ZOODf (x) cos(wx)dx, Vv has been replaced by x
Q 0

f_(w)iscaled theFourier cosine transformof f(x)

f (X) OOQA(W) cos(wx)dw \/Zoomfc(w) cos(wx)dw
0 T 0

f (X) Istheinverse Fourier cosine transform of fc (W)



"0, Fourier Sine Transform

Smilarly, for an odd function f(X) :

o0

f(X) Eﬁ(w)sin(wx)dw, where B(w) EDf(v)sin(wv)dv.

0

Define B(w) \E f<(w)
T

fo(W) \/%B(W) \/ZOODf(x)sin(vvx)dx, v has been replaced by x
Q 0

fs(w) Iscaled theFourier sinetransformof f(Xx)

f (X) Eﬁ(w)sin(wx)dw \/Zoomfs(w)sin(v\m)dw
0 7[0

f (X) Istheinverse Fourier sine transform of fs (W)
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) Fourier transform

]
1
e

m\We now have f(t) F e
tg T
L t)e ™ dt
T .

m Let’s not use just discrete frequencies, Nwy, ,
we’ll allow them to vary continuously too

m We’ll get there by setting t;=-T/2 and taking
limitsas T and n approach oo



Fourier transform

0 T/2

f (t) D Fneina)ot D eina)ot Df (t) e Ina)otdt

n o T/2

oo _7r 2 T/2 27rt

e T L et

n o T 273

27 [ .

im-" - da imnde o
T—>ooDT (] N—>co

£ (t) Eﬁi‘“tda)% e

oot

01 - .0
Ft)e "dt; do

Ver §

“'F(w)dw

S
e " 0l
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- Fourier transform

m S0 we have (unitary form, angular frequency)
L ()edt

F(1(t) F()

N2

F'(F(w) f(t) %O@:(a))e@tdw
m Alternatives (Laplace form, angular frequency)

F(1(1) F(o)

o0

f(t)e '“'dt

o0

F'(F(w)) f(t) %a:(a))ei“’tda)
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; - Fourier transform

m Ordinary frequency

F(f() F() - (t)e ' ‘dt

©0)

FUFC) f@®) [F()ed
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"0 Fourier transform

e

m Some sufficient conditions for application

mDirichlet conditions
B []|f@dt o
| f(t) has finite maxima and minima within any finite interval

W f(t) has finite number of discontinuities within any finite
Interval

m Square integrable functions (L2 space)
TPt o

m Tempered distributions, like Dirac delta
1

F( (1)) Ton
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; ~ Fourier transform

m Complex form — orthonormal basis functions for
space of tempered distributions

i e ela)zt
v Jon \/272' (0, w,)




“0; Convolution theorem

Theorem  F(f*g) F(f)F(9)
~(fg) F(f)*F(9)
- (F*G) F '(F)F '(G)
= Y(FG) FY(F)*F (G)

Proof (1) F(f*g) []f(t)g(t t) [gdtat

o0

f(t)e'*'dt gt t)e ' Vo

o0

| f(t)e ' dt f;cg(t")e at” g
=(f)F(9)
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