
Numerical Methods to Solve 
ODE of First Order

Bisection Method

Newton – Raphson method



Bisection 
Method

If a function f(x) is continuous
on the interval [a. b] and sign 
of f(a) ≠ sign of f(b), then: 

There is a value c ∈ [a. b] such 
that: f(c) = 0 I.e., there is a 
root c in the interval [a. b]



Bisection Method
•The Bisection Method is a successive approximation method that narrows down an 
interval that contains a root of the function f(x)

•The Bisection Method is given an initial interval [a, b] that contains a root
(We can use the property sign of f(a) ≠ sign of f(b) to find such an initial interval) 

•The Bisection Method will cut the interval into 2 halves and check which half interval
contains a root of the function

•The Bisection Method will keep cut the interval in halves until the resulting interval is 
extremely small

The root is then approximately equal to any value in the final (very small) interval. 



Suppose the interval [ a, b] is as follow: We cut the interval [a..b] in the middle: m = (a+b)/2



Because sign of f(m) ≠ sign of f(a) , we proceed with the 
search in the new interval [a, b]

So, we have changed the end point b to obtain a smaller 
interval that still contains a root

Now, we have an example to change the end point a: 

Initial interval [a, b]: 

After cutting the interval in half, the root is contained 
in the right-half



: 

So, we have to change the end point a Example: Find the root of f(x) = x2 − 5 between [0, 4]

There is a root between [0,4] because::

f(0) = 02 − 5 = −5
f(4) = 42 − 5 = 11

Start:

a = 0;    f(a) = -5
b = 4;    f(b) = 11

Iteration 1:

m = (a + b)/2 = 2

f(m) = 22 − 5 = -1

Because f(m) < 0, we replace a with 
m                           

a = 2;    f(a) = -1
b = 4;    f(b) = 11

Iteration 2:

m = (a + b)/2 = 3

f(m) = 32 − 5 = 4

Because f(m) > 0, we replace b with m 

a = 2;    f(a) = -1

b = 3;    f(b) = 4

Iteration 3:

m = (a + b)/2 = 2.5

f(m) = 2.52 − 5 = 1.25

Because f(m) > 0, we replace b with m 

a = 2;      f(a) = -1

b = 2.5;    f(b) = 1.25

And so on....

Approximate solution = 1.7320518493652344



Newton - Raphson’s Method
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Geometrical illustration of the Newton-Raphson method
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Example 1:
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Let us assume the initial guess of the root of               
is                  . This is a reasonable guess (discuss why 

and                 are not good choices) as the 
extreme values of the depth x would be 0 and the 
diameter (0.11 m) of the ball.
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Iteration 1
The estimate of the root is
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The absolute relative approximate error        at the end of Iteration 1 
is

a

The number of significant digits at least correct is 0, as you need an 
absolute relative approximate error of 5% or less for at least one 
significant digits to be correct in your result.
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Iteration 2
The estimate of the root is
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Estimate of the root for the Iteration 2.
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The absolute relative approximate error        at the end of Iteration 2 
is

a

The maximum value of m for which                              is 2.844. 
Hence, the number of significant digits at least correct in the 
answer is 2.

m
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Iteration 3
The estimate of the root is
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Fig:  Estimate of the root for the Iteration 3.
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The absolute relative approximate error        at the end of Iteration 3 
is

a

The number of significant digits at least correct is 4, as only 4 
significant digits are carried through all the calculations.



Advantages

• Converges fast (quadratic convergence), if it 
converges.  

• Requires only one guess

20



Drawbacks-Divergence at inflection points

21

1. Divergence at inflection points:
Selection of the initial guess or an iteration value of the root that is 
close to the inflection point of the function         may start diverging 
away from the root in the Newton-Raphson method.

For example, to find the root of the equation                                   .

The Newton-Raphson method reduces to                                       .

Table 1 shows the iterated values of the root of the equation.

The root starts to diverge at Iteration 6 because the previous estimate of 
0.92589 is close to the inflection point of         . 

Eventually after 12 more iterations the root converges to the exact value of 

 xf

    0512.01
3

 xxf

 
 2

33

1
13

512.01






i

i
ii

x

x
xx

1x

.2.0x



2. Division by zero

For the equation

the Newton-Raphson method 
reduces to

For                            , the 
denominator will equal zero. 

Drawbacks – Division by Zero
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Fig: Pitfall of division by zero or near 
a zero number



Drawbacks – Inflection Points

Iteration 
Number

xi

0 5.0000

1 3.6560

2 2.7465

3 2.1084

4 1.6000

5 0.92589

6 −30.119

7 −19.746

18 0.2000
23

    0512.01
3

 xxf

Fig: Divergence at inflection point for

Table 1 Divergence near inflection point.



Results obtained from the Newton-Raphson method may 
oscillate about the local maximum  or minimum without 
converging on a root but converging on the local maximum or 
minimum. 

Eventually, it may lead to division by a number close to zero 
and may diverge.

For example  for                          the equation has no real 
roots.

Drawbacks – Oscillations near local 
maximum and minimum

24

  02 2  xxf

3. Oscillations near local maximum and minimum



Drawbacks – Oscillations near local 
maximum and minimum

25

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75  -0.3040 0.5 3.142
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Iteration 

Number

0

1

2

3

4

5

6

7

8

9

–1.0000

0.5

–1.75

–0.30357

3.1423

1.2529

–0.17166

5.7395

2.6955

0.97678

3.00

2.25

5.063

2.092

11.874

3.570

2.029

34.942

9.266

2.954

300.00

128.571

476.47

109.66

150.80

829.88

102.99

112.93

175.96

Table 3 Oscillations near local maxima 
and mimima in Newton-Raphson method.

ix  ixf %a



4. Root Jumping
In some cases where the function          is oscillating and has a number 
of roots, one may choose an initial guess close to a root. However, the 
guesses may jump and converge to some other root.

For example 

Choose 

It will converge to

instead of 
-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

Drawbacks – Root Jumping
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0x

2831853.62  x Fig: Root jumping from intended 
location of root for

.
  0 sin  xxf
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Introduction

Syllabus

The syllabus contains the following articles:

First Order Differential Equation

Leibnitz linear equation
Bernoulli’s equation
Exact differential equation
Equations not of first degree

Equation solvable for p
Equation solvable for x
Equation solvable for y

Clairaut’s equation

Higher Order Differential Equation

Second order linear differential equations with variable coefficients
Method of variation of parameters
Power series solutions
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First Order Differential Equations Leibnitz linear equation

Leibnitz linear equation

Definition

An equation of the form
dy

dx
+ Py = Q, where P and Q are either constants or

functions of x only is called Leibnitz linear equation.

Alternately, the equation may be of the form
dx

dy
+ Px = Q, where P and Q

are either constants or functions of y only.

Solution

This equation is solved by evaluating the Integration Factor that is given by

IF = e
∫
Pdx and the solution is obtained by y(IF ) =

∫
Q(IF )dx+ c for the

former case and for the latter x is replaced by y in the IF and the solution.

(BBSBEC, FGS) B.Tech. (First Year) 3 / 34



First Order Differential Equations Leibnitz linear equation

Questions

dy

dx
+
y

x
= x3 − 3

x log x
dy

dx
+ y = 2 log x

dy

dx
+ y cotx = 5ecos x

dy

dx
=

y

2y log y + y − x√
1− y2dx = (sin−1 y − x)dy
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First Order Differential Equations Bernoulli equation

Bernoulli’s Equation

Definition

An equation of the form
dy

dx
+ Py = Qyn, where P and Q are either constants

or functions of x only is called Bernoulli’s equation.

Alternately, the equation may also be written as
dx

dy
+ Px = Qxn, where P

and Q are either constants or functions of y only.

Solution

This equation is reduced to Leibnitz linear equation by substituting y1−n = z
and differentiating. This generates the Leibnitz equation in z and x that is
solved as explained earlier and then z is resubstituted in terms of y. The
corresponding changes are made in the latter case of definition.
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First Order Differential Equations Bernoulli equation

Questions

x
dy

dx
+ y = x3y6

ey
(
dy

dx
+ 1

)
= ex

dy

dx
− tan y

1 + x
= (1 + x)ex sec y

dy

dx
+
y log y

x
=
y(log y)2

x2

(xy2 − e1/x
3

)dx− x2ydy = 0
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First Order Differential Equations Exact differential equation

Exact Differential Equation

Definition

An equation of the form M(x, y)dx+N(x, y)dy = 0 is said to be an Exact
differntial equation if it can be obtained directly by differentiating the equation
u(x, y) = c, which is its primitive.
i.e. if

du = Mdx+Ndy

Necessary and Sufficient Condition

The necessary and sufficient condition for the equation Mdx+Ndy = 0 to be
exact is

∂M

∂y
=
∂N

∂x

Solution

The solution of Mdx+Ndy = 0 is given by∫
y constant

Mdx+

∫
(terms of N not containing x)dy = c

(BBSBEC, FGS) B.Tech. (First Year) 7 / 34



First Order Differential Equations Exact differential equation

Questions

(x2 − 4xy − 2y2)dx+ (y2 − 4xy − 2x2)dy = 0

(1 + ex/y)dx+

(
1− x

y

)
ex/ydy = 0

(2xy cosx2 − 2xy + 1)dx+ (sinx2 − x2)dy = 0

xdy + ydx+
xdy − ydx
x2 + y2

= 0

(y2exy
2

+ 4x3)dx+ (2xyexy
2

− 3y2)dy = 0

(BBSBEC, FGS) B.Tech. (First Year) 8 / 34



First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

Reducible to exact equations

Equations which are not exact can sometimes be made exact after multiplying
by a suitable factor (function of x and/or y) called the Integration Factor (IF).

IF by Inspection

ydx+ xdy = d(xy)

ydx− xdy
y2

= d

(
x

y

)
xdy − ydx

xy
= d

[
log
(y
x

)]
xdx+ ydy

x2 + y2
= d

[
1

2
log(x2 + y2)

]

xdy − ydx
x2

= d
(y
x

)
xdy − ydx
x2 + y2

= d

(
tan−1

x

y

)
ydx+ xdy

xy
= d[log(xy)]

xdy − ydx
x2 − y2

= d

(
1

2
log

x+ y

x− y

)
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Homoegeneous Equation

If Mdx+Ndy = 0 is a Homoegeneous equation in x and y, then
1

Mx+Ny
is

an IF provided Mx+Ny 6= 0.

IF for f1(xy)ydx+ f2(xy)xdy = 0

For equation of this type, IF is given by
1

Mx−Ny
.

(BBSBEC, FGS) B.Tech. (First Year) 10 / 34



First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Mdx+Ndy = 0

If

∂M
∂y −

∂N
∂x

N
is a function of x only, say f(x), then IF = e

∫
f(x)dx.

If

∂N
∂x −

∂M
∂y

M
is a function of y only, say g(y), then IF = e

∫
g(y)dy.

IF for xayb(mydx+ nxdy) + xcyd(pydx+ qxdy) = 0

In this equation, a, b, c, d,m, n, p, q are all constants and IF is given by xhyk,
where h and k are so chosen that the equation becomes exact after
multiplication with IF.
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First Order Differential Equations Equations reducible to exact equations

Questions

(1 + xy)ydx+ (1− xy)xdy = 0

xdy − ydx = xy2dx

(xyex/y + y2)dx− x2ex/ydy = 0

(x2y2 + xy + 1)ydx+ (x2y2 − xy + 1)xdy = 0(
y +

y3

3
+
x2

2

)
dx+

1

4
(x+ xy2)dy = 0

(2x2y − 3y4)dx+ (3x3 + 2xy3)dy = 0

(xy2 + 2x2y3)dx+ (x2y − x3y2)dy = 0
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First Order Differential Equations Equations not of first degree

Equations of first order and higher degree

Definition

A differential equation of the first order and nth degree is of the form

pn + P1p
n−1 + P2p

n−2 + · · ·+ Pn = 0, where p =
dy

dx
(1)

(BBSBEC, FGS) B.Tech. (First Year) 13 / 34



First Order Differential Equations Equations not of first degree

Equations solvable for p

Resolve equation (1) into n linear factors and solve each of the factors to
obtain solution of the given equation.

Questions

p2 − 7p+ 12 = 0

xyp2 − (x2 + y2)p+ xy = 0

p− 1

p
=
x

y
− y

x

p2 − 2p sinhx− 1 = 0

4y2p2 + 2pxy(3x+ 1)3x3 = 0
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First Order Differential Equations Equations not of first degree

Equations solvable for y

Differentiate equation (1), wrt x, to obtain a differential equation of first order
in p and x that has solution of the form φ(x, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

xp2 − 2yp+ ax = 0

y − 2px = tan−1(xp2)

x2
(
dy

dx

)4

+ 2x
dy

dx
− y = 0

x− yp = ap2

(BBSBEC, FGS) B.Tech. (First Year) 15 / 34



First Order Differential Equations Equations not of first degree

Equations solvable for x

Differentiate equation (1), wrt y, to obtain a differential equation of first order
in p and y that has solution of the form φ(y, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

y = 3px+ 6p2y2

p3 − 4xyp+ 8y2 = 0

y = 2px+ p2y

y2 log y = xyp+ p2

(BBSBEC, FGS) B.Tech. (First Year) 16 / 34



First Order Differential Equations Clairaut’s equation

Clairaut’s equation

Definition

An equation of the form y = px+ f(p) is called Clairaut’s equation.

Solution

Differente the equation wrt x, and obtain the solution by putting p = c in the
given equation.

Questions

y = xp+
a

p

y = px+
√
a2p2 + b2

p = sin(y − px)

p = log(px− y)

(BBSBEC, FGS) B.Tech. (First Year) 17 / 34



Higher Order Differential Equation

Linear Differential Equations

Definition

A linear differential equation is that in which the dependent variable and
its derivatives occur only in the first degree and are not multiplied together.
Thus, the general linear differential equation of the nth order is of the form

dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ · · ·+ an−1

dy

dx
+ any = X (2)

(BBSBEC, FGS) B.Tech. (First Year) 18 / 34



Higher Order Differential Equation

Linear Differential Equations

Complementary Function (CF)

If all the roots of equation (2) are real and distint, CF is given by
y = c1e

m1x + c2e
m2x + · · ·+ cne

mnx

If two roots are equal, say m1 = m2, then CF is given by
y = (c1x+ c2)em1x + c3e

m3x + · · ·+ cne
mnx

If two roots are imaginary, say m1 = α+ ιβ, m2 = α− ιβ, then CF is
given by y = eαx(c1 cosβx+ c2 sinβx) + c3e

m3x + · · ·+ cne
mnx

It two pairs of imaginary roots are equal, say
m1 = m2 = α+ ιβ, m3 = m4 = α− ιβ, then CF is given by
y = eαx[(c1x+ c2) cosβx+ (c3x+ c4) sinβx] + c5e

m5x + · · ·+ cne
mnx
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Higher Order Differential Equation

Linear Differential Equations

Particular Integral (PI)

If X = eax, then PI is given by y =
1

f(D)
eax =

1

f(a)
eax, provided f(a) 6= 0.

If X = sin(ax+ b) or cos(ax+ b), then PI is given by

y =
1

f(D2)
sin(ax+ b) =

1

f(−a2)
sin(ax+ b). Likewise for cos(ax+ b).

If X = xm, where m is a positive integer, then PI is given by y =
1

(D)
xm.

Take out the lowest degree term from f(D) to make the first term unity and
then shift the remaining term to numerator and apply Binomial expansion
upto Dm. Operate term by term on xm.
If X = eaxV , where V is a function of x, then PI is given by

y =
1

f(D)
eaxV = eax

1

f(D + a)
V .

If X is any other function of x, then PI is obtained by resolving the f(D) into

linear factors and applying
1

D − a
X = eax

∫
e−axXdx

(BBSBEC, FGS) B.Tech. (First Year) 20 / 34



Higher Order Differential Equation

Questions

(D2 + 4D + 5)y = −2 coshx

(D2− 4D + 3)y = sin 3x cos 2x

(D2 + 4)y = ex + sin 2x

(D2 +D)y = x2 + 2x+ 4

(D2 − 3D + 2)y = xe3x + sin 2x

(D2 − 4D + 4)y = 8x2e2x sin 2x

(D2 − 1)y = x sinx+ (1 + x2)ex

(D − 1)2(D + 1)2y = sin2 x

2
+ ex + x
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Higher Order Differential Equation LDE with Variable Coefficients

Cauchy’s Homogeneous Equation

Definition

An equation of the form

xn
dny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ a2x

n−2 d
n−2y

dxn−2
+ · · ·+ an−1x

dy

dx
+ any = X (3)

where ais are constants and X is a function of x is called Cauchy’s
Homegeneous Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
z = ex thereby generating an LDE in x and z that can be solved as explained
earlier and finally the solution of equation (3) is obtained by putting z = log x.
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

x2
d2y

dx2
+ 9x

dy

dx
− 25y = 50

x4
d3y

dx3
+ 2x3

d2y

dx2
− x2 dy

dx
+ xy = 1

d2y

dx2
+

1

x

dy

dx
=

12 log x

x2

x2
d2y

dx2
− 3x

dy

dx
+ y = log x

sin(log x) + 1

x
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Higher Order Differential Equation LDE with Variable Coefficients

Legendre’s Linear Equation

Definition

An equation of the form

(a+ bx)n
dny

dxn
+ a1(a+ bx)n−1

dn−1y

dxn−1
+ · · ·+ an−1(a+ bx)

dy

dx
+ any = X (4)

where ais, a and b are constants and X is a function of x is called Legendre’s
Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
a+ bx = ez thereby generating an LDE in x and z that can be solved as
explained earlier and finally the solution of equation (4) is obtained by putting
z = log(a+ bx).
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

(1 + x)2
d2y

dx2
+ (1 + x)

dy

dx
+ y = 4 cos log(1 + x)

(1 + 2x)2
d2y

dx2
− 6(1 + 2x)

dy

dx
+ 16y = 8(1 + 2x)2

(3 + 2x)2
d2y

dx2
− 2(3 + 2x)

dy

dx
− 12y = 6x
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Higher Order Differential Equation variation of parameters

Variation of Parameters

This method is applicable for the second order differential equation of the

form
d2y

dx2
+ a1

dy

dx
+ a2y = X

Let the CF of this equation be

y = c1y1 + c2y2

. Then the PI of this equation is given by

y = uy1 + vy2

where

u = −
∫
y2X

W
dx

and

v =

∫
y1X

W
dx

where W is the Wronskian of y1, y2.
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Higher Order Differential Equation variation of parameters

Questions

d2y

dx2
+ 4y = 4 sec2 2x

d2y

dx2
+ y = cosec x

d2y

dx2
+ y = x sinx

y′′ − 2y′ + 2y = ex tanx
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Higher Order Differential Equation Series Solution

Series Solution

We discuss the method of solving equations of the form

P0(x)
d2y

dx2
+ P1(x)

dy

dx
+ P2(x)y = 0 (5)

where P0(x), P1(x) and P2(x) are polynomials in x, in terms of infinite
convergent series.

Solution

Divide equation (5) by P0(x) to get

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (6)

where p(x) =
P1(x)

P0(x)
and q(x) =

P2(x)

P0(x)
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Higher Order Differential Equation Series Solution

Series Solution

Ordinary Point

x = 0 is called an ordinary point of equation (5) if P0(0) 6= 0.
In this casem the solution of equation (5), can be expressed as

y = a0 + a1x+ a2x
2 + · · · =

∞∑
k=0

akx
k

Singular Point

x = 0 is called a singular point of equation (5), if P0(0) = 0.
In this case, the solution of equation (5) can be expressed as

y = xm(a0 + a1x+ a2x
2 + · · · ) =

∞∑
k=0

akx
m+k
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Higher Order Differential Equation Series Solution

Solution when x = 0 is an ordinary point

Solution

Let y =

∞∑
k=0

akx
k be the solution of equation (5). Then, on differentiating

dy

dx
=

∞∑
k=1

kakx
k−1 and

d2y

dx2
=

∞∑
k=2

k(k − 1)akx
k−2.

1. Substitute the values of y, dydx ,
d2y
dx2 in equation (5).

2. Equate to zero the coefficients of various powers of x and find a2, a3, a4, . . .
in terms of a0 and a1.
3. Equate to zero the coefficient of xn. The relation so obtained is called the
recurrence relation.
4. Give different values to n in the recurrence relation to determine various ais
in terms of a0 and a1.
5. Substitute the values in the above mentioned series to obtain the solution
with a0 and a1 as arbitrary constants.
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Higher Order Differential Equation Series Solution

Questions

d2y

dx2
+ xy = 0

y′′ − xy′ + x2y = 0

(2− x2)y′′ + 2xy′ − 2y = 0
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Higher Order Differential Equation Series Solution

Solution when x = 0 is a regular singular
point I

Let y =

∞∑
k=0

akx
m+k be the solution of equation (5). Then, on differentiating

dy

dx
=

∞∑
k=0

(m+ k)akx
m+k−1 and

d2y

dx2
=

∞∑
k=0

(m+ k)(m+ k − 1)akx
m+k−2.

1. Substitute the values of y, dydx ,
d2y
dx2 in equation (5).

2. Equate to zero the coefficients of lowest powers of x. This gives a quadratic
equation in m, which in known as indicial equation.
3. Equate to zero the coefficients of other powers of x to find a1, a2, a3, a4, . . .
in terms of a0.
4. Substitute the values of a1, a2, a3, . . . in above said solutionto get the series
solution of (5) having a0 as the arbitrary constant. Though, it is not the
complete solution as the same should have two arbitrary constants.
5. The method of complete solution depends on the nature of roots of the
indicial equation.
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Higher Order Differential Equation Series Solution

Solution when x = 0 is a regular singular
point II

Case I When the roots m1,m2 are distinct and not differing by an
integer. Then the complete solution is given by

y = c1(y)m1
+ c2(y)m2

Case II When the roots m1,m2 are equal. Then the complete solution is
given by

y = c1(y)m1
+ c2

(
∂y

∂m

)
m1

Case III When the roots m1 < M2 are distinct and differ by an integer.
Then th ecomplete solution is given by

y = c1(y)m1 + c2

(
∂y

∂m

)
m1
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Higher Order Differential Equation Series Solution

Questions

2x2
d2y

dx2
+ (2x2 − x)

dy

dx
+ y = 0

x2
d2y

dx2
+ x

dy

dx
+ (x2 − 4)y = 0

2x(1− x)
d2y

dx2
+ (1− x)

dy

dx
+ 3y = 0
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