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Introduction

Syllabus

The syllabus contains the following articles:

First Order Differential Equation

Leibnitz linear equation
Bernoulli’s equation
Exact differential equation
Equations not of first degree

Equation solvable for p
Equation solvable for x
Equation solvable for y

Clairaut’s equation

Higher Order Differential Equation

Second order linear differential equations with variable coefficients
Method of variation of parameters
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First Order Differential Equations Leibnitz linear equation

Leibnitz linear equation

Definition

An equation of the form
dy

dx
+ Py = Q, where P and Q are either constants or

functions of x only is called Leibnitz linear equation.

Alternately, the equation may be of the form
dx

dy
+ Px = Q, where P and Q

are either constants or functions of y only.

Solution

This equation is solved by evaluating the Integration Factor that is given by

IF = e
∫
Pdx and the solution is obtained by y(IF ) =

∫
Q(IF )dx+ c for the

former case and for the latter x is replaced by y in the IF and the solution.

(BBSBEC, FGS) 3 /27



First Order Differential Equations Leibnitz linear equation

Questions

dy

dx
+
y

x
= x3 − 3

x log x
dy

dx
+ y = 2 log x

dy

dx
+ y cotx = 5ecos x

dy

dx
=

y

2y log y + y − x√
1− y2dx = (sin−1 y − x)dy
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First Order Differential Equations Bernoulli equation

Bernoulli’s Equation

Definition

An equation of the form
dy

dx
+ Py = Qyn, where P and Q are either constants

or functions of x only is called Bernoulli’s equation.

Alternately, the equation may also be written as
dx

dy
+ Px = Qxn, where P

and Q are either constants or functions of y only.

Solution

This equation is reduced to Leibnitz linear equation by substituting y1−n = z
and differentiating. This generates the Leibnitz equation in z and x that is
solved as explained earlier and then z is resubstituted in terms of y. The
corresponding changes are made in the latter case of definition.
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First Order Differential Equations Bernoulli equation

Questions

x
dy

dx
+ y = x3y6

ey
(
dy

dx
+ 1

)
= ex

dy

dx
− tan y

1 + x
= (1 + x)ex sec y

dy

dx
+
y log y

x
=
y(log y)2

x2

(xy2 − e1/x
3

)dx− x2ydy = 0
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First Order Differential Equations Exact differential equation

Exact Differential Equation

Definition

An equation of the form M(x, y)dx+N(x, y)dy = 0 is said to be an Exact
differntial equation if it can be obtained directly by differentiating the equation
u(x, y) = c, which is its primitive.
i.e. if

du = Mdx+Ndy

Necessary and Sufficient Condition

The necessary and sufficient condition for the equation Mdx+Ndy = 0 to be
exact is

∂M

∂y
=
∂N

∂x

Solution

The solution of Mdx+Ndy = 0 is given by∫
y constant

Mdx+

∫
(terms of N not containing x)dy = c
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First Order Differential Equations Exact differential equation

Questions

(x2 − 4xy − 2y2)dx+ (y2 − 4xy − 2x2)dy = 0

(1 + ex/y)dx+

(
1− x

y

)
ex/ydy = 0

(2xy cosx2 − 2xy + 1)dx+ (sinx2 − x2)dy = 0

xdy + ydx+
xdy − ydx
x2 + y2

= 0

(y2exy
2

+ 4x3)dx+ (2xyexy
2

− 3y2)dy = 0
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

Reducible to exact equations

Equations which are not exact can sometimes be made exact after multiplying
by a suitable factor (function of x and/or y) called the Integration Factor (IF).

IF by Inspection

ydx+ xdy = d(xy)

ydx− xdy
y2

= d

(
x

y

)
xdy − ydx

xy
= d

[
log
(y
x

)]
xdx+ ydy

x2 + y2
= d

[
1

2
log(x2 + y2)

]

xdy − ydx
x2

= d
(y
x

)
xdy − ydx
x2 + y2

= d

(
tan−1

x

y

)
ydx+ xdy

xy
= d[log(xy)]

xdy − ydx
x2 − y2

= d

(
1

2
log

x+ y

x− y

)
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Homoegeneous Equation

If Mdx+Ndy = 0 is a Homoegeneous equation in x and y, then
1

Mx+Ny
is

an IF provided Mx+Ny 6= 0.

IF for f1(xy)ydx+ f2(xy)xdy = 0

For equation of this type, IF is given by
1

Mx−Ny
.
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Mdx+Ndy = 0

If

∂M
∂y −

∂N
∂x

N
is a function of x only, say f(x), then IF = e

∫
f(x)dx.

If

∂N
∂x −

∂M
∂y

M
is a function of y only, say g(y), then IF = e

∫
g(y)dy.

IF for xayb(mydx+ nxdy) + xcyd(pydx+ qxdy) = 0

In this equation, a, b, c, d,m, n, p, q are all constants and IF is given by xhyk,
where h and k are so chosen that the equation becomes exact after
multiplication with IF.
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First Order Differential Equations Equations reducible to exact equations

Questions

(1 + xy)ydx+ (1− xy)xdy = 0

xdy − ydx = xy2dx

(xyex/y + y2)dx− x2ex/ydy = 0

(x2y2 + xy + 1)ydx+ (x2y2 − xy + 1)xdy = 0(
y +

y3

3
+
x2

2

)
dx+

1

4
(x+ xy2)dy = 0

(2x2y − 3y4)dx+ (3x3 + 2xy3)dy = 0

(xy2 + 2x2y3)dx+ (x2y − x3y2)dy = 0
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First Order Differential Equations Equations not of first degree

Equations of first order and higher degree

Definition

A differential equation of the first order and nth degree is of the form

pn + P1p
n−1 + P2p

n−2 + · · ·+ Pn = 0, where p =
dy

dx
(1)
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First Order Differential Equations Equations not of first degree

Equations solvable for p

Resolve equation (1) into n linear factors and solve each of the factors to
obtain solution of the given equation.

Questions

p2 − 7p+ 12 = 0

xyp2 − (x2 + y2)p+ xy = 0

p− 1

p
=
x

y
− y

x

p2 − 2p sinhx− 1 = 0

4y2p2 + 2pxy(3x+ 1)3x3 = 0
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First Order Differential Equations Equations not of first degree

Equations solvable for y

Differentiate equation (1), wrt x, to obtain a differential equation of first order
in p and x that has solution of the form φ(x, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

xp2 − 2yp+ ax = 0

y − 2px = tan−1(xp2)

x2
(
dy

dx

)4

+ 2x
dy

dx
− y = 0

x− yp = ap2
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First Order Differential Equations Equations not of first degree

Equations solvable for x

Differentiate equation (1), wrt y, to obtain a differential equation of first order
in p and y that has solution of the form φ(y, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

y = 3px+ 6p2y2

p3 − 4xyp+ 8y2 = 0

y = 2px+ p2y

y2 log y = xyp+ p2
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First Order Differential Equations Clairaut’s equation

Clairaut’s equation

Definition

An equation of the form y = px+ f(p) is called Clairaut’s equation.

Solution

Differente the equation wrt x, and obtain the solution by putting p = c in the
given equation.

Questions

y = xp+
a

p

y = px+
√
a2p2 + b2

p = sin(y − px)

p = log(px− y)
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Higher Order Differential Equation

Linear Differential Equations

Definition

A linear differential equation is that in which the dependent variable and
its derivatives occur only in the first degree and are not multiplied together.
Thus, the general linear differential equation of the nth order is of the form

dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ · · ·+ an−1

dy

dx
+ any = X (2)
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Higher Order Differential Equation

Linear Differential Equations

Complementary Function (CF)

If all the roots of equation (2) are real and distint, CF is given by
y = c1e

m1x + c2e
m2x + · · ·+ cne

mnx

If two roots are equal, say m1 = m2, then CF is given by
y = (c1x+ c2)em1x + c3e

m3x + · · ·+ cne
mnx

If two roots are imaginary, say m1 = α+ ιβ, m2 = α− ιβ, then CF is
given by y = eαx(c1 cosβx+ c2 sinβx) + c3e

m3x + · · ·+ cne
mnx

It two pairs of imaginary roots are equal, say
m1 = m2 = α+ ιβ, m3 = m4 = α− ιβ, then CF is given by
y = eαx[(c1x+ c2) cosβx+ (c3x+ c4) sinβx] + c5e

m5x + · · ·+ cne
mnx
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Higher Order Differential Equation

Linear Differential Equations

Particular Integral (PI)

If X = eax, then PI is given by y =
1

f(D)
eax =

1

f(a)
eax, provided f(a) 6= 0.

If X = sin(ax+ b) or cos(ax+ b), then PI is given by

y =
1

f(D2)
sin(ax+ b) =

1

f(−a2)
sin(ax+ b). Likewise for cos(ax+ b).

If X = xm, where m is a positive integer, then PI is given by y =
1

(D)
xm.

Take out the lowest degree term from f(D) to make the first term unity and
then shift the remaining term to numerator and apply Binomial expansion
upto Dm. Operate term by term on xm.
If X = eaxV , where V is a function of x, then PI is given by

y =
1

f(D)
eaxV = eax

1

f(D + a)
V .

If X is any other function of x, then PI is obtained by resolving the f(D) into

linear factors and applying
1

D − a
X = eax

∫
e−axXdx
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Higher Order Differential Equation

Questions

(D2 + 4D + 5)y = −2 coshx

(D2− 4D + 3)y = sin 3x cos 2x

(D2 + 4)y = ex + sin 2x

(D2 +D)y = x2 + 2x+ 4

(D2 − 3D + 2)y = xe3x + sin 2x

(D2 − 4D + 4)y = 8x2e2x sin 2x

(D2 − 1)y = x sinx+ (1 + x2)ex

(D − 1)2(D + 1)2y = sin2 x

2
+ ex + x
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Higher Order Differential Equation LDE with Variable Coefficients

Cauchy’s Homogeneous Equation

Definition

An equation of the form

xn
dny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ a2x

n−2 d
n−2y

dxn−2
+ · · ·+ an−1x

dy

dx
+ any = X (3)

where ais are constants and X is a function of x is called Cauchy’s
Homegeneous Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
z = ex thereby generating an LDE in x and z that can be solved as explained
earlier and finally the solution of equation (3) is obtained by putting z = log x.
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

x2
d2y

dx2
+ 9x

dy

dx
− 25y = 50

x4
d3y

dx3
+ 2x3

d2y

dx2
− x2 dy

dx
+ xy = 1

d2y

dx2
+

1

x

dy

dx
=

12 log x

x2

x2
d2y

dx2
− 3x

dy

dx
+ y = log x

sin(log x) + 1

x
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Higher Order Differential Equation LDE with Variable Coefficients

Legendre’s Linear Equation

Definition

An equation of the form

(a+ bx)n
dny

dxn
+ a1(a+ bx)n−1

dn−1y

dxn−1
+ · · ·+ an−1(a+ bx)

dy

dx
+ any = X (4)

where ais, a and b are constants and X is a function of x is called Legendre’s
Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
a+ bx = ez thereby generating an LDE in x and z that can be solved as
explained earlier and finally the solution of equation (4) is obtained by putting
z = log(a+ bx).
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

(1 + x)2
d2y

dx2
+ (1 + x)

dy

dx
+ y = 4 cos log(1 + x)

(1 + 2x)2
d2y

dx2
− 6(1 + 2x)

dy

dx
+ 16y = 8(1 + 2x)2

(3 + 2x)2
d2y

dx2
− 2(3 + 2x)

dy

dx
− 12y = 6x
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Higher Order Differential Equation variation of parameters

Variation of Parameters

This method is applicable for the second order differential equation of the

form
d2y

dx2
+ a1

dy

dx
+ a2y = X

Let the CF of this equation be

y = c1y1 + c2y2

. Then the PI of this equation is given by

y = uy1 + vy2

where

u = −
∫
y2X

W
dx

and

v =

∫
y1X

W
dx

where W is the Wronskian of y1, y2.
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Higher Order Differential Equation variation of parameters

Questions

d2y

dx2
+ 4y = 4 sec2 2x

d2y

dx2
+ y = cosec x

d2y

dx2
+ y = x sinx

y′′ − 2y′ + 2y = ex tanx
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p-series Test

1

1 1 1 1

1 2 3p p p p
n n





    

converges if           , diverges if            .1p  1p 

We could show this with the integral test.

If this test seems backward after the ratio and nth root 

tests, remember that larger values of  p would make the 

denominators increase faster and the terms decrease 
faster.





Limit Comparison Test

If               and              for all              (N a positive integer)0na  0nb  n N

If                                             , then both            and           
converge or both diverge.

lim    0n

n
n

a
c c

b
    na nb

If                          , then             converges if           converges.lim 0n

n
n

a

b
 na nb

If                          , then             diverges if           diverges.lim n

n
n

a

b
  na nb





The series converges if            .1L 

The series diverges if            .1L 

The test is inconclusive if           .1L 

D `Alembert's Ratio Test:

If             is a series with positive terms andna 1lim n

n
n

a
L

a





then:





Let            a series of positive terms and let limit n[un/un+1 – 1]=l. Then 

(a) if l>1,                converges

(a) if l<1,             diverges 

(a) the test fails when l=1.

Raabe’s Test

na

na
na



The series converges if            .1L 

The series diverges if            .1L 

The test is inconclusive if           .1L 

Cauchy’s Root Test:

If             is a series with positive terms andna lim n
n

n
a L




then:

Note that the 
rules are the 
same as for 
the Ratio Test.





0

1

2

3

1 2 3 4

Remember that when we first studied integrals, we used a 
summation of rectangles to approximate the area under a 
curve:

This leads to:

Cauchy’s Integral Test

If          is a positive sequence and                     where

is a continuous, positive decreasing function, then:

 na  na f n

 f n

and                       both converge or both diverge .n
n N

a




  
N

f dxx




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