Ordinary Differential Equations

Baba Banda Singh Bahadur Engineering College
Fatehgarh Sahib

(BBSBEC, FGS) 1/27



SYLLABUS BBsBfC

The syllabus contains the following articles:

o First Order Differential Equation

Leibnitz linear equation
Bernoulli’s equation

Exact differential equation
Equations not of first degree

o Equation solvable for p
e Equation solvable for x
o Equation solvable for y

e Clairaut’s equation

e Higher Order Differential Equation

e Second order linear differential equations with variable coefficients
o Method of variation of parameters
[}
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1T O PG IS BISS LN IS VDT ERA sl Leibnitz linear equation

LEIBNITZ LINEAR EQUATION Eﬂﬂﬁc

DEFINITION

d
An equation of the form e + Py = @, where P and @ are either constants or

functions of x only is called Leibnitz linear equation.
d
Alternately, the equation may be of the form d—x + Pz = (@), where P and @
Y

are either constants or functions of y only.

SOLUTION
This equation is solved by evaluating the Integration Factor that is given by

IF = e P4 and the solution is obtained by y(IF) = / Q(IF)dz + c for the

former case and for the latter z is replaced by y in the IF and the solution.
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First Order Differential Equations

(QUESTIONS
dy |y 3
der  x T
dy
o zlogrx— +y=2logx
dx
° dy + ycotx = 5e°*7
dx
dy Yy

° der  2ylogy+vy—=x

V1 —y2de = (sin™'y — 2)dy
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Leibnitz linear equation
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First Order Differential Equations [ESTVSTeIt1laE-ToTIETATe}0

BERNOULLI’S EQUATION E“ﬁc

DEFINITION

d
An equation of the form i 4 + Py = Qy", where P and @ are either constants
T

or functions of = only is called Bernoulli’s equation.
x
Alternately, the equation may also be written as T + Pz = Qx", where P

and @ are either constants or functions of y only.

SOLUTION

This equation is reduced to Leibnitz linear equation by substituting y'=" = z

and differentiating. This generates the Leibnitz equation in z and x that is
solved as explained earlier and then z is resubstituted in terms of y. The
corresponding changes are made in the latter case of definition.
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First Order Differential Equations [ESTVSTeIt1laE-ToTIETATe}0

QUESTIONS BESBEC

d -
° :zz—ery:zdy()

dx
dy
1
ce (@)=
d t
° d—z - % = (14 x)e®secy
o W ylosy _ y(ogy)?
dx x i

o (zy? — el/xs)dz‘ — 2%ydy = 0
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| 3TN O PG IS BIES LV IS EV I O ERA sl Exact differential equation

EXACT DIFFERENTIAL EQUATION E“ﬁc

DEFINITION

An equation of the form M (z,y)dx + N(x,y)dy = 0 is said to be an Exact
differntial equation if it can be obtained directly by differentiating the equation
u(z,y) = ¢, which is its primitive.
ie. if

du = Mdx + Ndy

NECESSARY AND SUFFICIENT CONDITION

The necessary and sufficient condition for the equation Mdx + Ndy = 0 to be

exact is
oM  ON

Oy O

SOLUTION
The solution of Mdx + Ndy = 0 is given by

/ Mdz + /(terms of N not containing z)dy = ¢
y constant

(BBSBEC, FGS)
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| 3TN O PG IS BIES LV IS EV I O ERA sl Exact differential equation

QUESTIONS “5@‘:

(2% — day — 2y%)dx + (y* — 4oy — 22*)dy = 0

(14 e*/¥)dx + (1 - i) e*Vdy = 0

o (2zycosz? — 2zy + 1)dx + (sinz? — 2?)dy = 0
xdy — ydz
d de + ———— =0
ray + yar + 22 12

(erJ“’2 + 423)dx + (Qxye”yz —3y*)dy =0
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First Order Differential Equations Equations reducible to exact equations

EQUATIONS REDUCIBLE TO EXACT EQUATIONSBHSﬁ'c

REDUCIBLE TO EXACT EQUATIONS

Equations which are not exact can sometimes be made exact after multiplying
by a suitable factor (function of z and/or y) called the Integration Factor (IF).

IF BY INSPECTION

e ydx + zdy = d(zy) ° xdyx;?ydx =d (%)
o W = d g (2)] . yd””zifyxdy — dllog(xy)]
o TETUY | jionta? +7)] o T _a(G10p 1Y)
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First Order Differential Equations Equations reducible to exact equations

EQUATIONS REDUCIBLE TO EXACT EQUATIONSBHSﬁ'c

IF FOrR HOMOEGENEOUS EQUATION

If Mdx + Ndy = 0 is a Homoegeneous equation in = and y, then

1 .
Mx + Ny .
an IF provided Mx + Ny # 0.

v

IF FOR fi1(zy)ydx + fo(zy)zdy =0
1

For equation of this type, IF is given by Vo —No
T —INY
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First Order Differential Equations Equations reducible to exact equations

EQUATIONS REDUCIBLE TO EXACT EQUATIONSBHSﬁ'c

IF rOR Mdx + Ndy =0

oM _ ON

o If % is a function of x only, say f(z), then IF = el f@)de,
ON _ oM

o If % is a function of y only, say g(y), then IF = ¢J 9@y,

IF FoR z%y’(mydz 4+ nxdy) + z°y? (pydz + qrdy) =0

In this equation, a, b, ¢, d, m,n, p, q are all constants and IF is given by z"¢*,
where h and k are so chosen that the equation becomes exact after
multiplication with IF.
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First Order Differential Equations Equations reducible to exact equations

QUESTIONS “5@‘:

(14 zy)yde + (1 — zy)zdy =0
zdy — ydx = zy’dz
(zye™V +y?)dx — x e”“/ydy = (0
(2%y* + zy + Vyda + (2®y? — 2y + )ady = 0
y> @’ 1 2
y+§+ dx+4(x+xy)dy=0
(22%y — 3y dx + (323 4 22y3)dy = 0
(zy? + 22°%93)dx + (2%y — 2°y*)dy = 0

12 /27
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First Order Differential Equations Equations not of first degree

EQUATIONS OF FIRST ORDER AND HIGHER DEEW

DEFINITION
A differential equation of the first order and n'" degree is of the form
n n—1 n—2 dy
P Pp" T Pop™ T - Py = 0, where p = - (1)
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First Order Differential Equations Equations not of first degree

EQUATIONS SOLVABLE FOR p E“ﬁc

Resolve equation (1) into n linear factors and solve each of the factors to
obtain solution of the given equation.

QUESTIONS
0 p?—Tp+12=0
o xyp® — (z* +y*)p+ 2y =0
1 x vy
op——=——=
p y
p? —2psinhz —1=0
4y?p* + 2pry(3z + 1)32° = 0
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First Order Differential Equations Equations not of first degree

EQUATIONS SOLVABLE FOR ¥ anﬁc

Differentiate equation (1), wrt x, to obtain a differential equation of first order
in p and x that has solution of the form ¢(x,p,c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.
QUESTIONS

o zp? —2yp+ax =0

o y — 2px = tan~!(xp?)

4
dy dy
2

2l =] +2z—=—-y=0

(dx) dz Y
o = —yp=ap*

(BBSBEC, FGS) 15/ 27



First Order Differential Equations Equations not of first degree

EQUATIONS SOLVABLE FOR & BESBEC

Differentiate equation (1), wrt y, to obtain a differential equation of first order
in p and y that has solution of the form ¢(y, p,c¢) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

QUESTIONS
o y = 3px + 6p2y?
o p? —dayp +8y* =0
o y=2pr+ply
° y*logy = zyp +p°
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IS AN O PG IS DI LN IS YV DTIETA Gl Clairaut’s equation

CLAIRAUT’S EQUATION E“ﬁc

DEFINITION

An equation of the form y = px + f(p) is called Clairaut’s equation.

SOLUTION

Differente the equation wrt z, and obtain the solution by putting p = ¢ in the
given equation.

QUESTIONS
a
e y=ap+ —
p
e y=px+/a?p? + b?

o p=sin(y — pz)
e p=log(pr —y)
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Higher Order Differential Equation

LINEAR DIFFERENTIAL EQUATIONS anﬁc

DEFINITION

A linear differential equation is that in which the dependent variable and
its derivatives occur only in the first degree and are not multiplied together.
Thus, the general linear differential equation of the n'” order is of the form

dny dnfly dn72y dy
_J . e n—1—"— n = X 2
daz"+a1dx”_1+a2dx"—2+ + On 1dx+ay 2)
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Higher Order Differential Equation

LINEAR DIFFERENTIAL EQUATIONS E“?.ﬁc

i

COMPLEMENTARY FunctioN (CF)

o If all the roots of equation (2) are real and distint, CF is given by
Yy =c1e™* 4 coe™?* 4 ... 4 et
o If two roots are equal, say m; = mo, then CF is given by
y = (1@ + c2)e™® 4 c3e™3% + .-« 4 et
o If two roots are imaginary, say m; = a + 18, ms = o — 13, then CF is
given by y = e**(cy cos Sz + cosin fx) + c3e™3” + -+ 4 ¢ €M7
o It two pairs of imaginary roots are equal, say
mi1 =me = a+ 13, mg =my = a — 13, then CF is given by
y = e*|[(crx + c2) cos fx + (csx + c4) sin fx] + c5e™F 4 - -+ + ¢ e™n®

(BBSBEC, FGS) 19727



Higher Order Differential Equation

LINEAR DIFFERENTIAL EQUATIONS E“ﬁc

PARTICULAR INTEGRAL (PI)

1 1
If X = e, then PI is given by y = ———€* = ——¢%*, provided f(a) # 0.
O] (
If X =sin(az + b) or cos(ax + b), then PI is given by
1

y = ———sin(ax + b) = —— sin(ax + b). Likewise for cos(ax + b).

Fo) WD = Fay e ) oty
If X = 2™, where m is a positive integer, then PI is given by y = —z™

(D)

Take out the lowest degree term from f(D) to make the first term unity and
then shift the remaining term to numerator and apply Binomial expansion
upto D™. Operate term by term on z™.
If X = e*®V, where V is a function of x, then PI is given by

1 (ZIV axr 1 V
Y= ——¢ =e¥—V.

f(D) f(D+a)

If X is any other function of z, then PI is obtained by resolving the f(D) into

1 .
linear factors and applying TX = e / e” " Xdx
—a

(BBSBEC, FGS) 20727




Higher Order Differential Equation

(QUESTIONS ““’6‘:
o (D*+4D +5)y=—2coshz
e (D2 —4D + 3)y = sin 3z cos 2z
o (D?+4)y=e” +sin2z
o (D2+D)jy=2%+2x+4
o (D? —3D +2)y = ze3* + sin 2z
o (D? —4D +4)y = 8z%e** sin 2z
° (D2—1)y—xsmx+(1+x )e*
o (D —1)%(D +1)%*y = sin® §+e et

(BBSBEC, FGS) 21727



2 ST=3 TV @ P e ST BT NI I OCTIETIil L DE with Variable Coefficients

CAUCHY’S HOMOGENEOUS EQUATION E“ﬁc

DEFINITION

An equation of the form

dr n—1 m—2

n Y n—1 d Y n—2d Y dy _
o + a1z e + asx T2 4o n—1T— +a,y=X (3)

where a;s are constants and X is a function of x is called Cauchy’s
Homegeneous Linear Equation.

SOLUTION

The equation is reduced to an LDE with constant coefficients by putting
z = €” thereby generating an LDE in x and z that can be solved as explained
earlier and finally the solution of equation (3) is obtained by putting z = log .

(BBSBEC, FGS) 22727



2 ST=3 TV @ P e ST BT NI I OCTIETIil L DE with Variable Coefficients

QUESTIONS EES@C

°
dx?  xzdx 2

(BBSBEC, FGS)
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2 ST=3 TV @ P e ST BT NI I OCTIETIil L DE with Variable Coefficients

LEGENDRE’S LINEAR EQUATION BESBEC

DEFINITION

An equation of the form

dny B dn—ly
n n—1
(a+ bx) Ton + a1(a + bx) T

d
+~-~+an,1(a+bx)£ +a,y=X (4)

where a;s, a and b are constants and X is a function of x is called Legendre’s
Linear Equation.

SOLUTION

The equation is reduced to an LDE with constant coefficients by putting

a + bxr = e® thereby generating an LDE in z and z that can be solved as
explained earlier and finally the solution of equation (4) is obtained by putting
z = log(a + bx).

(BBSBEC, FGS) 24 / 34



2 ST=3 TV @ P e ST BT NI I OCTIETIil L DE with Variable Coefficients

QUESTIONS BESBEC

d%y dy
2 y
o (1+ux) In2 +(1+ x)dx +y = 4coslog(1l + x)
d?y dy
N2 T i mar N2
o (14 2x) 7n2 6(1 + 2z) 7% + 16y = 8(1 + 2x)
d*y dy
2 L =
o (34 2x) 7n2 2(3+2x)da: 12y = 6z
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)2 67=3 TV @ 3 Te (ST DRSS NI I OCTIETS e}l variation of parameters

VARIATION OF PARAMETERS “5@ <

This method is applicable for the second order differential equation of the

d?y dy
form P —|—a1d— + agy = X

i X
Let the CF of this equation be

Yy = Cc1y1 + c2y2

. Then the PI of this equation is given by

Y = uy1 + vy
where
U= — %dx
w
and -
V= / ylwdx

where W is the Wronskian of y1, yo.

(BBSBEC, FGS)

26 /27



)2 67=3 TV @ 3 Te (ST DRSS NI I OCTIETS e}l variation of parameters

QUESTIONS “5@‘:

d2

° d—g+4y:456022x
T

° %—kyzcosecw
T
d*y o

° ﬁ—l—y—xsmw

oy’ — 2y +2y=e"tanz
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RESULTS

IMPORTANT TERMS, DEFINITIONS &




01.  Function of Two Variables:

Let us consider a set of points D in the plane. A rule which assigns a unique
real value = to each point in D is called a real valued function defined on D. Using
rectangular coordinates, we can identify every point on the plane by an ordered pair

(x, y)of real numbers. Thus the real valued function may be represented as = = f/( x, ]) \

where x and y are called independent variables and - 1s the dependent variable. D is
known as the domain of the function f .
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Similarly, when we hold x equal to a constant x,, == f(x, ]) becomes the function
z= (xﬂ,y) of y, whose graph is the intersection of the surface with the plane x=x,
(Figure 2), and the y—derivative f| (x5, 7, ) is the slope in the positive y—direction of

the tangent line to this curve at y =y, .



06. Higher Order Partial Derivatives:
If the partial derivative 7. exists at every point of a region D, then f, itself is a well
defined function on D, and it therefore makes sense to consider partial derivatives of £,
with respect to x and y . Such partial derivatives, if exist, are called second order partial

derivatives of f, and are denoted respectively by /. and f_ . In fact, the subscripts

indicate not only the orders of the partial derivatives but also the sequence in which they
are  taken, for  examples, T = (f. )1_ and I =

17



1. find the 1%t order partail derivative of the following functions:
(i) u=x’ siu[Z] ii)u = log(x* + %)
X

sol. (1)

Here u=x" siu[Z]
X

on_ 5 sin(L) + x> cos(z)(—lz)
Ox X X X
= ZxSiJJ(Z) —yCOS(Z) |
X X
cu

— = fcos(Z)_l = xcos(z)
X x X




(11)

here u = log(x” + ¥°)

o 1
=——.2%
ox X" +y
. 2x
x4y
o 1
and - 5 -2)
y X +y
2y

x4y

20




)

4, If w=€"",Prove that =(1+ 3oz +x"v' 2™

oxchee

Sol,
w=aw
Dnfferentiating partially w.r.t. z
an e’
& =
Difterentiating partially w.rt y
&

eV

=29 a4 xe

={x+xva)e™

Again differentiating partially wor.t, x
&

CACEs

=(l+207)e™ +{x+ X )™ o

-

r 1
=e" (1+3nc+xy:

21




Homogeneous functions:
e Afunctien f(x. v)of two variables © & v is sald to be homogeneous function of
degreen, if it can be expressed as

fo-24{Z) (2

Or
A fimction f{x. v)is said to be homoegeneous function of degree n. If

Sxay=1 flx.v)

s Afunction f{x.v.z)of three variables x, v & = is said to be homogeneous function of

2

degreen, if it can be expressed as

Jix v, 2)=2"¢

i ~ e ! i _'i
¥ 3 s | e
—— | or -.-'|;¢_| - | o E"qﬁ_.[
Lx-x ¥ ¥

LI ]

22




2, .2
e.g. (1) f(:c:,y):x T 1s homogeneous of degree 1.
X—y
2
X +
@) Sfxy)=""=
X—y

1s not homogeneous function

23



Euler’s Theorem for homogeneous functions
Statement:
If # is homogeneous function of degree n in two variables x & y, then

cu cu
X—+y—=nu

Cox T oy

24



Proof:
Let n=f(x, 1)
= n."*¢5| IJ veeremstk 1) { As is homogeneous function of degree 1)
| X

Differentiating partially equation(1) w.r.t. x, we get

& Rl 1
—_— =X — |[+Xx
= ¢|JJ #

T h -1
|

[ g s 1
= H.‘r"'l.;'.-| F ]— _1*.1.""".9'5-'( A |
\ X ]
Multiply by ¥, we oet

X i = m’"-;i-[ lT] — g '{ %] ................ (2)

o .
Again differentiating partially equation (1) w. 1. t. v, we get

Ky

25



G _

o l)l _ f--.q#.[l]

x) % x

Multiply by v, we get

y

c . v
p— = "™ '[-— | e (3)
T

dy X
Adding equations (2) and (3), we get
o
.TE + _1'@ = J*r_‘c’"-;.'i[l | = n
X

i v

e ol o i B B

Hence proved.
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ettt

If # is homogeneous function of degree n in two variables x & y, then

2 2 2
X 5—2‘+ 2xy ou +y° 6_?; =n(n—1u
ox oxcy oy

27



Proof:
As u is homogeneous function of degree n in two variables x & y, therefore by

Euler’s theorem

Differentiating partially equation (1) w. r. t\z\hx, we get
o'u  éu , &% u _ Cu

X—5 bl =n
ox~ ox oxoy ox

52;” a 6”
or X ==D—
5 6 =( )
Multiply by x, we get
2 2
2 0ou 5, u 5 _( _1).{@ ............... (2)

6r2

28



Again Differentiating partially equation (1) w.r.t. v, we get

*u  Ou

X

&*u
or X

Multiply by v, we get

ou % u
Xy +y —=(mn- 1)}’
ovox &y’ 6?}

Adding equations (2) and (3), we get

_|_

v oy

& u cu
’ = 1—

t—+V_——
ovox Gy oy oy

2
@:(n—l)@
] a}!

29




, &u ou , 8%u cu ot &’u o'u
X —2"‘2.’0} —|—y —2:(}?—1) x__l_y_ .. —
ox cxoy oy ox oy oxoy  oyox
=n(n—Du { using equation (1)}

Hence proved.

30



C'omiposite Functions
If = f(x.v). where x=g(r), v=¢ (r).then u is called a composite function of the

: : o ITE
single variable r and we can obtain y which 1s called the total derrvarive of u.
]

Ifu= f(x,v), where x=¢(r.s), v=¢(r.5), then u 1s called a composite function of
.. B &
two variables r and 5 and we can obtain HH and .F‘_” .
or i

31



Lifferentiation of Composite Functions:
If & 15 A composite function of 7, defined by the relation = (%, v) and
du_ou ds ou b
df  &x dt v df
If # 13 a composite function of 7. defined by the relation v = f(x.v, =) and
. ; dn o dx O odv Ow o
x=d(r), y=e (). ==, () then E=EE+mE+EE
If # 15 a composite function of » and s, defined by the relation w= f|x.y) and
x=g(r.5). v=¢,(r.5).then
& O oo T & e ds &
If u=flx.v). where v=¢(x). then as w=w|x). therefore » is a composite
funetions of ¥, so we have ﬂ =fi+Eﬂ
g dr oy dx
If w=f{x.v). where x=¢{1). then as u=uw(v). therefore » is 3 composite
du  &n dx  Ou
dv ox'dy ow

x=¢@(r), v=¢l¢).then

functions of v, so we have

32




MULTIPLE INTEGRALS

IMPORTANT TERMS, DEFINITIONS & RESULTS




09.  Evaluation of a double integral.

A double integral can be evaluated by successive single integrations i.e. as a two-fold
iterated (repeated) integral as follows (if R 1s regular in y-direction):

x=b | y=V,[x)
Ip= I{ | f(x,y)cz}}«tr (1)

x=a | y=3(x)
Where the integration is performed first with respect to y (within the braces). With the
substitution of the limits 3 (x) and y, (x), the integrand becomes a function of x alone,

which is then integrated with respect to x from atob.
In a similar way, for a domain R (regular in x-direction) which i1s bounded above by

x=x,(y) and bounded below by x=x(v) and the abscissa v =d andy =e. The

y=e | x=x3{)

In this case the integration is first performed with respect to x and then later with respect
toy.

double integral 1s evaluated as

38




10. Change of order of integration:
As already discussed, for the double integral with variable limits

I, = [[ f(x.)ds (1)

The limits of integration can be fixed from a rough sketch of the domain on integration.
Then (1) can be evaluated as a two-fold iterated integral using either

b Ya(x)

L=[ [ fxyda @
a y(x)
e 1'1[‘."']

or L=[ [ fan)ddr @
d x(y)

In each specific problem. depending upon the type of the domain R and / or the nature of
the integrand, choose either (2) or (3) whichever 1s easier to evaluate. Thus, in several
problems, the evaluation of double integral becomes easier with the change of order of
integration, which of course, changes the limits of integration also.

LO



11. General change of variables in Double Integrals:
In several cases, the evaluation of double integrals becomes easy when we change

variables.
Let R be region in xy-plane and let x, v be the rectangular Cartesian coordinates of any
point P in R. Let #, v_be new variables in region R" such that x, y and #, v are connected
through the continuous functions (transformations)

x=gl(u,v), v=h(u,v)
Then u, v _are said to be curvilinear coordinates of point P* in R™ which uniquely

corresponds to P in R. Then, a given double integral in the old variables x and y can be
transformed to a double integral in terms of new variables #, v as follows:

J[7 (o) sy =[] F (1,v) | e

ox  ox

. R
Where J is Jacobian|definedas J=J LV = (x») _|ou v
u,v ) 7 0(u,v) & o

ou ov

L1



o Double Integrals in Polar coordinates:

For a double integral in Cartesian coordinates x, y, the change of variables to polar
coordinates . can be done through the transformation
x=rcosf, yv=rsinf

adx Ox
) é(x.v) |la apl |cos@ —rsind
The Jacobian in this case1s J=J ACRA [ (Y’ '}) = or 00 =\ . =r
r,0 é(r.0) |ov 0oy| jin@  rcosf
or 06

Therefore, the double integral in Cartesian coordinates x, y gets transformed to double
integral in polar coordinated as follows:

Hf(x,y)dm_‘y :Hf(rcos O,rsin@)r drdo

Where R 1s the corresponding domain in polar coordinates.

L2



14. General change of variables in Triple Integrals:
Let the functions x= f(u,v, w), v=glu,v, w), z=h(u,v, w) be the transformations
from cartesian coordinates x, y, = to the curvilinear coordinates #, v, w. Let F (x,v,z)be a

continuous function defined in a domain 7 in the xyz coordinate system. Then a triple
integral in cartesian coordinates x, y, = can be transferred to a triple integral in the
curvilinear coordinates u, v, w as follows:

IHF(:{,y,:)dr dy dz =IIIG(I£,v, w)|J|du dv aw

ox Ox ox
ou ov  ow
Where J 1s Jacobian defined as J[I’y’:] = M: ¥y ¥ @ and ¥ is
r— U, v, w o(u,v,w) |ou v Ow
oz oz 4
ou ov  ow

the corresponding domain in the curvilinear coordinates #, v, w
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X Triple Integral in Cylindrical Coordinates:
Cylindrical coordinates r. &, = are particularly useful in problems of solids having axis of

symmetry. The transformation of Cartesian coordinates x, y, = in term of cylindrical
coordinates is given by

x=rcosf. y=rsinf. - =z and the Jacobian in this case is given by
o ) or 00 Ol |0s@ —rsin@ 0
J:L:@ > @zsiuﬂ rcos@ Ol=r
é(r.0,z) |éor 60 & 0 0 |
e & &
or 06 4
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Therefore. IHF (x.v.2)dx dy d- :_[_” F(rcos@.,rsin@.z)|J|dr do d-
v =

= IIIF(?"CDS 0.rsin6,z)r dr do d:
>

Ly



o Triple Integral in Spherical Pelar Coordinates:
[n problems having symmetry with respect to a point O (generally the onigin). it would be
convenient to use spherical coordinates with this point choesen as origin. Coordinate
transformation from x, v, = to the sphercal coordinates = &, ¢ are @mven by

y=rsinf cosd, yv=rsinfsingd, =rcosf
and the Jacobian in thus case 15 given by

&r  dr o

a8 ap

= sinfcosgy recosfoosg  —rsinfsing
Mzvz) |&v & & L : . 1,
=3t o A =lsinsing roosdsng —rsanfeos g = sind
glr.8.¢) |8r O & .
cos & —rFein g ]
g e o=
ar a0 S

Thus. jﬂFﬁr._v.: |t ey d= :HIF{?'Equms-ﬁ-. rsm&sing, reostd)||dr 40 dp
¥ s

=JTIF{;" sinfeosg, rsmfsm g, rmsﬂ]rl sinf ar di g
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15. Volume of a solid:
Volume of a solid contained in the domain ¥ is given by the triple integral as follows:

V= _[E[IdV = L[Idr dy d-
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Infinite $eries




nth-Term Test

The nth-Term Test is also called the Divergence
Test.

The nth-Term Condition is given below :

Iim . % oo

7 —>0C0

Note : This test can be used only for divergence.

This test cannot be used for convergence.
Basically, it says that, for a series lim a,

n—0oo

if an 20, then the series diverges




P-Series

The p-series is a pretty straight-forward series to
understand and use.

X 1 1

The P-Series El+-—+—+---
Zr 3P

n=1

Converges when P >1

Diverges when O<pz<l



The P Series Convergence Theorem

O

= Converges when P >1

A Diverges when O<psl

oo 1
In Summary: For the series Z =
n=1

1. p»1  converges by the integral test
2. 0<p<1  diverges by the nth-term test
3. p=0 diverges by the nth-term test
4. p<0 diverges by the nth-term test




p-series Test

-1 1 1 1
np 1p Zp 3p

n=1

converges if P>1, divergesif P<1 .

We could show this with the integral test.

If this test seems backward after the ratio and nth root

tests, remember that larger values of P would make the

denominators increase faster and the terms decrease
faster.




Limit Comparison Test

If 8, >0 and b. >0 forall n>N (N a positive integer)

If Iimizc O<C<oo ,thenbothzan and an

i bn converge or both diverge.

If Iim& =0 ,then Zan converges iben converges.

N—o0
n

If Iimizoo , then Zan diverges if andiverges.

N—o0
n




D "Alembert's Ratio Test:

If > a, is aseries with positive terms and lim It |
N—>00 a'n

then:

The series converges if L <1 .

The series diverges if L >1 .

The test is inconclusive if L =1




Raabe’s Test

Let Z a a series of positive terms and let limit n[un/un+1 — 1]=I. Then

(a) ifI>1,Zah converges
(a) if I<1,Z:5',1 diverges

(a) the test fails when I=1.




Cauchy’s Root Test:

If 26\1 is a series with positive terms and Iimp/an =L

N—o0

then:

The series converges if L <1 .

Note that the
rules are the
same as for
the Ratio Test.

The series diverges if L >1 .

The test is inconclusive if L =1




Remember that when we first studied integrals, we used a
summation of rectangles to approximate the area under a
curve:

This leads to:

e Cauchy’s Integral Test

if {&,} is a positive sequence and &, = f (n) where

f (n) is a continuous, positive decreasing function, then:

Z a, and IN f (x)dX both converge or both diverge .
N

M



Alternating Series Test

The Alternating Series Test is sometimes called the
Leibniz Test or the Leibniz Criterion.

n
Z(—l)" an
=0

Converge if both of the following condition hold :

Condition1: Ilima,=0

n—coo

Condition2: 0<a,+ <a,




Absolute And Conditional Convergence

Sometimes a series will have positive and negative
terms, but not necessarily alternate with each term.
To determine the convergence of the series we will

look at the convergence of the absolute value of that
series.

Absolute Convergence: If the series D, lanl

converges, then the series Z an converges

Conditionally Convergent: If ) a. converges but

D lan| diverges.

-
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