
Introduction
Mechanical Vibrations



What is vibration?
• Vibrations are oscillations of a system about an equilbrium position.



Vibration…

It is also an 
everyday 
phenomenon we 
meet on 
everyday life



Vibration …
Useful Vibration Harmful vibration

Noise

Destruction

Compressor

Ultrasonic 

cleaning

Testing

Wear

Fatigue



Vibration parameters

All mechanical systems 

can be modeled by 

containing three basic 

components:

spring, damper, mass

When these components are subjected to constant force, 

they react with a constant

displacement, velocity and acceleration



Free vibration 
• When a system is initially disturbed by a displacement, velocity 

or acceleration, the system begins to vibrate with a constant 
amplitude and frequency depend on its stiffness and mass.

• This frequency is called as natural frequency, and the form of 
the vibration is called as mode shapes

Equilibrium pos.



Forced Vibration

If an external force applied to a 

system, the system will follow the 

force with the same frequency. 

However, when the force 

frequency is increased to the 

system’s natural frequency, 
amplitudes will dangerously 

increase in this region. This 

phenomenon called as

“Resonance”

’ 



Bridge collapse:

http://www.youtube.com/watch?v=j-zczJXSxnw

Hellicopter resonance: 

http://www.youtube.com/watch?v=0FeXjhUEXlc

Resonance vibration test: 

http://www.youtube.com/watch?v=LV_UuzEznHs

Flutter (Aeordynamically induced vibration) : 

http://www.youtube.com/watch?v=OhwLojNerMU

Watch these …

http://www.youtube.com/watch?v=j-zczJXSxnw
http://www.youtube.com/watch?v=0FeXjhUEXlc
http://www.youtube.com/watch?v=LV_UuzEznHs
http://www.youtube.com/watch?v=OhwLojNerMU


Lumped (Rigid) Modelling Numerical Modelling 

Element-based 

methods

(FEM, BEM)

Statistical and Energy-

based methods

(SEA, EFA, etc.)

Modelling of vibrating systems
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Because running in the International Space 

Station might cause unwanted vibrations, they 

have installed a Treadmill Vibration Isolation 

System.
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• Mechanical vibration is the motion of a particle or body which 

oscillates about a position of equilibrium.  Most vibrations in 

machines and structures are undesirable due to increased stresses 

and energy losses.

• Time interval required for a system to complete a full cycle of the 

motion is the period of the vibration.

• Number of cycles per unit time defines the frequency of the vibrations.

• Maximum displacement of the system from the equilibrium position is the 

amplitude of the vibration.

• When the motion is maintained by the restoring forces only, the vibration 

is described as free vibration.  When a periodic force is applied to the 

system, the motion is described as forced vibration.

• When the frictional dissipation of energy is neglected, the motion 

is said to be undamped.  Actually, all vibrations are damped to 

some degree.



Free Vibrations of Particles.  Simple Harmonic 
Motion

19 - 12

• If a particle is displaced through a distance xm from its 

equilibrium position and released with no velocity, the 

particle will undergo simple harmonic motion,
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• x is a periodic function and n is the natural circular 

frequency of the motion.

• C1 and C2 are determined by the initial conditions:
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Free Vibrations of Particles.  Simple Harmonic 
Motion

19 - 13

   txx nm sin


n

n 
 2

period





 2

1 n

n
nf natural frequency

   2
0

2
0 xvx nm  amplitude

   
nxv  00

1tan phase angle



Free Vibrations of Particles.  Simple Harmonic 
Motion
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   txx nm sin

• Velocity-time and acceleration-time curves can be 

represented by sine curves of the same period as the 

displacement-time curve but different phase angles.
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Simple Pendulum (Approximate Solution)
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• Results obtained for the spring-mass system can be 

applied whenever the resultant force on a particle is 

proportional to the displacement and directed towards 

the equilibrium position.

for small angles, 
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• Consider tangential components of acceleration and 

force for a simple pendulum,
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Simple Pendulum (Exact Solution)
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Concept Question

2 - 17

The amplitude of a 

vibrating system is 

shown to the right.  

Which of the 

following statements 

is true (choose 

one)?

a) The amplitude of the acceleration equals the 

amplitude of the displacement

b) The amplitude of the velocity is always opposite 

(negative to) the amplitude of the displacement 

c) The maximum displacement occurs when the 

acceleration amplitude is a minimum

d) The phase angle of the vibration shown is zero



Sample Problem 19.1

19 - 18

A 50-kg block moves between vertical 

guides as shown.  The block is pulled 

40mm down from its equilibrium position 

and released.

For each spring arrangement, 

determine a)  the period of the vibration, 

b) the maximum velocity of the block, 

and c) the maximum acceleration of the 

block.

SOLUTION:

• For each spring arrangement, determine 

the spring constant for a single 

equivalent spring.

• Apply the approximate relations for the 

harmonic motion of a spring-mass 

system.



Sample Problem 19.1
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SOLUTION:

• Springs in parallel:

- determine the spring constant for equivalent spring
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- apply the approximate relations for the harmonic 

motion of a spring-mass system
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Sample Problem 19.1
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mkN6mkN4 21  kk
• Springs in series:

- determine the spring constant for equivalent spring

- apply the approximate relations for the harmonic 

motion of a spring-mass system
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Free Vibrations of Rigid Bodies

19 - 21

• If an equation of motion takes the form

0or0 22   nn xx 

the corresponding motion may be considered 

as simple harmonic motion.  

• Analysis objective is to determine n.
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• For an equivalent simple pendulum,
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• Consider the oscillations of a square plate
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Sample Problem 19.2

19 - 22

k

A cylinder of weight W is suspended as 

shown.

Determine the period and natural 

frequency of vibrations of the cylinder.

SOLUTION:

• From the kinematics of the system, relate 

the linear displacement and acceleration 

to the rotation of the cylinder.

• Based on a free-body-diagram equation 

for the equivalence of the external and 

effective forces, write the equation of 

motion.

• Substitute the kinematic relations to arrive 

at an equation involving only the angular 

displacement and acceleration.



Sample Problem 19.2

19 - 23

SOLUTION:

• From the kinematics of the system, relate the linear 

displacement and acceleration to the rotation of the cylinder.
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• Based on a free-body-diagram equation for the equivalence of 

the external and effective forces, write the equation of motion.
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• Substitute the kinematic relations to arrive at an equation 

involving only the angular displacement and acceleration.
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Sample Problem 19.3
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The disk and gear undergo torsional 

vibration with the periods shown.  

Assume that the moment exerted by the 

wire is proportional to the twist angle.

Determine a) the wire torsional spring 

constant, b) the centroidal moment of 

inertia of the gear, and c) the maximum 

angular velocity of the gear if rotated 

through 90o and released.

SOLUTION:

• Using the free-body-diagram equation for 

the equivalence of the external and 

effective moments, write the equation of 

motion for the disk/gear and wire.

• With the natural frequency and moment of 

inertia for the disk known, calculate the 

torsional spring constant.

• With natural frequency and spring 

constant known, calculate the moment of 

inertia for the gear.

• Apply the relations for simple harmonic 

motion to calculate the maximum gear 

velocity.



Sample Problem 19.3
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SOLUTION:

• Using the free-body-diagram equation for the 

equivalence of the external and effective moments, 

write the equation of motion for the disk/gear and 
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• With the natural frequency and moment of inertia for 
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constant.
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Sample Problem 19.3
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• With natural frequency and spring constant 

known, calculate the moment of inertia for the 

gear.
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• Apply the relations for simple harmonic motion to 

calculate the maximum gear velocity.
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Group Problem Solving

19 - 27

A uniform disk of radius 250 mm  is 

attached at A to a 650-mm rod AB of 

negligible mass which can rotate freely 

in a vertical plane about B. If the rod is 

displaced 2°from the position shown 

and released, determine the period of 

the resulting oscillation.

SOLUTION:

• Using the free-body and kinetic diagrams, 

write the equation of motion for the 

pendulum.

• Determine the natural frequency and 

moment of inertia for the disk (use the 

small angle approximation).

• Calculate the period.



Group Problem Solving

2 - 28

Draw the FBD and KD of the pendulum (mbar ~ 0).
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Group Problem Solving

2 - 29

Find I, set up equation of motion 

using small angle approximation

Determine the natural frequency
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Concept Question

19 - 30

In the previous problem, what 

would be true if the bar was 

hinged at A instead of welded 

at A (choose one)?

a) The natural frequency of the oscillation would be larger

b) The natural frequency of the oscillation would be larger

c) The natural frequencies of the two systems would be 

the same



Principle of Conservation of Energy

19 - 31

• Resultant force on a mass in simple harmonic motion 

is conservative - total energy is conserved.
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Sample Problem 19.4
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Determine the period of small 

oscillations of a cylinder which rolls 

without slipping inside a curved 

surface.

SOLUTION:

• Apply the principle of conservation of 

energy between the positions of maximum 

and minimum potential energy. 

• Solve the energy equation for the natural 

frequency of the oscillations.



Sample Problem 19.4

19 - 33
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Sample Problem 19.4
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• Solve the energy equation for the natural frequency 

of the oscillations.



Forced Vibrations
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Forced vibrations - Occur 

when a system is subjected to 

a periodic force or a periodic 

displacement of a support.
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Forced Vibrations
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At f = n, forcing input is in 

resonance with the system.
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Concept Question

2 - 37

A small trailer and its load have 

a total mass m. The trailer can 

be modeled as a spring with 

constant k.  It is pulled over a 

road, the surface of which can 

be approximated by a sine 

curve with an amplitude of 40 

mm and a wavelength of 5 m.  

Maximum vibration amplitude 

occur at 35 km/hr.  What 

happens if the driver speeds up 

to 50 km/hr?

a) The vibration amplitude remains the same.

b) The vibration amplitude would increase.

c) The vibration amplitude would decrease.



Sample Problem 19.5
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A motor weighing 350 lb is supported by 

four springs, each having a constant 750 

lb/in.  The unbalance of the motor is 

equivalent to a weight of 1 oz located 6 

in. from the axis of rotation.  

Determine a) speed in rpm at which 

resonance will occur, and b) amplitude of 

the vibration at 1200 rpm.

SOLUTION:

• The resonant frequency is equal to the 

natural frequency of the system.

• Evaluate the magnitude of the periodic 

force due to the motor unbalance.  

Determine the vibration amplitude from 

the frequency ratio at 1200 rpm.



Sample Problem 19.5

19 - 39

SOLUTION:

• The resonant frequency is equal to the natural 

frequency of the system.
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Sample Problem 19.5
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W = 350 lb

k = 4(350 

lb/in)

rad/s 5.57n

• Evaluate the magnitude of the periodic force due to the 

motor unbalance.  Determine the vibration amplitude 

from the frequency ratio at 1200 rpm.
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2

2



















m

f 

    lb 33.157.125001941.0
2

12
6

2



 mrmaP nm

   
in 001352.0

5.577.1251

300033.15

1
22









nf

m
m

kP
x



xm = 0.001352 in. (out of 

phase)



Damped Free Vibrations

19 - 41

• With viscous damping due to fluid friction,

:maF   
0


kxxcxm

xmxcxkW st





• Substituting x = elt and dividing through by elt

yields the characteristic equation,

m

k

m

c

m

c
kcm 








2
2

22
0 lll

• Define the critical damping coefficient such that

nc
c m

m

k
mc

m

k

m

c 220
2

2









• All vibrations are damped to some degree by 

forces due to dry friction, fluid friction, or internal 

friction.



Damped Free Vibrations

19 - 42

• Characteristic equation,

m

k

m

c

m

c
kcm 








2
2

22
0 lll

 nc mc 2 critical damping coefficient

• Heavy damping:  c > cc

tt
eCeCx 21

21
ll  - negative roots 

- nonvibratory motion

• Critical damping:  c = cc

  tnetCCx
 21 - double roots 

- nonvibratory motion

• Light damping:  c < cc

   tCtCex dd
tmc  cossin 21

2  











2

1
c

nd
c

c damped frequency



Concept Question
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The graph above represents an oscillation that is…

(a) Heavily damped (b) critically damped (c) lightly damped



Concept Question
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0 0.5 1 1.5 2 2.5 3
-8

-6

-4

-2

0

2

4

6

8

The period for the oscillation above is approximately…

a) 1.25 seconds b) 2.5 Hz c) 0.6 seconds

Estimate the phase shift for the oscillationZero



2 - 45

Forced vibrations can be caused by a test machine, by rocks on a trail, by 

rotating machinery, and by earthquakes.  Suspension systems, shock 

absorbers, and other energy-dissipating devices can help to dampen the 

resulting vibrations.   



Damped Forced Vibrations

19 - 46

      
  

  









2

222

1

2
tan

21

1

nf

nfc

nfcnf

m

m

m

cc

cc

x

kP

x






 magnification 

factor

phase difference between forcing and steady state 

response

tPkxxcxm fm sin  particulararycomplement xxx 



Group Problem Solving

19 - 47

A simplified model of a washing machine is shown.  A bundle of wet clothes 

forms a mass mb of 10 kg in the machine and causes a rotating unbalance. 

The rotating mass is 20 kg (including mb) and the radius of the washer 

basket e is 25 cm. Knowing the washer has an equivalent spring constant 

k = 1000 N/m and damping ratio z = c/cc = 0.05 and during the spin cycle 

the drum rotates at 250 rpm, determine the amplitude of the motion.

SOLUTION:

• Determine the system natural 

frequency, damping constant, and 

the unbalanced force.

• Determine the steady state 

response and the magnitude of the 

motion.



Group Problem Solving

19 - 48

Given:  m= 20 kg, k= 1000 N/m, 

f= 250 rpm, e= 25 cm, mb= 10 kg

Find:  xm

Calculate the forced circular 

frequency and the natural circular 

frequency

(2 )(250)
26.18 rad/s

60
f

   1000
7.0711 rad/s

20
n

k

m
   

2 2 (1000)(20) 282.84 N s/mcc km   

Calculate the critical damping constant cc and the damping constant c

(0.05)(141.42) 14.1421 N s/m
c

c
c c

c

 
    
 



Group Problem Solving

19 - 49

Calculate the unbalanced force 

caused by the wet clothes

2

2(10 kg)(0.25 m)(26.18 rad/s) 1713.48 N

m b f

m

P m e

P



 

sinm fmx cx kx P t  

 2
2 2

2 2 2

2 2

( )

1713.48

[1000 (20)(26.18) ] [(141421)(26.18)]

1713.48 1713.48
0.13478 m

12,713.2( 12,707.8) (370.24)

m
m

f f

P
x

k m c 


 


 

  
 

Use Eq 19.52 to determine xm

134.8 mmmx 



Concept Question

2 - 50

The following parameters were 

found in the previous problem:

a) The vibration amplitude remains the 

same.

b) The vibration amplitude would 

increase.

c) The vibration amplitude would 

decrease.

26.18 rad/sf 

7.0711rad/sn 
=0.05

What would happen to the 

amplitude x
m

if the forcing 

frequency f was cut in half?



Concept Question
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26.18 rad/sf 

7.0711rad/sn 

Case 1

13.09 rad/sf 

7.0711rad/sn 

Case 2

 22 2( )

m
m

f f

P
x

k m c 


 



Electrical Analogues

19 - 52

• Consider an electrical circuit consisting of an inductor, 

resistor and capacitor with a source of alternating voltage

0sin 
C

q
Ri

dt

di
LtE fm 

• Oscillations of the electrical system are analogous to 

damped forced vibrations of a mechanical system.

tEq
C

qRqL fm sin
1

 



Electrical Analogues

19 - 53

• The analogy between electrical and mechanical 

systems also applies to transient as well as steady-

state oscillations.

• With a charge q = q0 on the capacitor, closing the 

switch is analogous to releasing the mass of the 

mechanical system with no initial velocity at x = x0.

• If the circuit includes a battery with constant voltage 

E, closing the switch is analogous to suddenly 

applying a force of constant magnitude P to the 

mass of the mechanical system.



Electrical Analogues

19 - 54

• The electrical system analogy provides a means of 

experimentally determining the characteristics of a given 

mechanical system.

• For the mechanical system,

    0212112121111  xxkxkxxcxcxm 

    tPxxkxxcxm fm sin12212222  

• For the electrical system,

  0
2

21

1

1
21111 




C

qq

C

q
qqRqL 

  tE
C

qq
qqRqL fm sin

2

12
12222 


 

• The governing equations are equivalent.  The characteristics 

of the vibrations of the mechanical system may be inferred 

from the oscillations of the electrical system.



• Mathematical modeling of a physical system requires the 

selection of a set of variables that describes the behavior 

of the system.

• The number of degrees of freedom for a system is the 

number of kinematically independent variables necessary 

to completely describe the motion of every particle in the

system

DOF=1

Single degree of freedom (SDOF)

DOF=2 

Multi degree of freedom (MDOF)

Degree of Freedom (DOF)



Equivalent model of systems

Example 1: Example 2:

SDOF

DOF=1

MDOF

DOF=2



Equivalent model of systems

Example 3:

SDOF

MDOF

DOF=2

DOF= 3 if body 1 has no rotation

DOF= 4 if body 1 has rotation

body 1



What are their DOFs?



SDOF systems
• Helical springs

F: Force, D: Diameter, G: Shear modulus of the rod, 

N: Number of turns, r :  Radius 

Shear stress: 

Stiffness coefficient: 

 Springs in combinations: 

Parallel combination Series combination



Elastic elements as springs



Moment of Inertia



What are the equivalent stiffnesses?



Example
• A 200-kg machine is attached to the end of a cantilever beam of length L= 2.5 m, 

elastic modulus E= 200x109 N/m2, and cross-sectional moment of inertia I = 1.8x10–6

m4. Assuming the mass of the beam is small compared to the mass of the machine, 
what is the stiffness of the beam?



Damping

• Viscous Damping


