
Objects and Classes

•OO Programming Concepts

•Creating Objects and Object Reference Variables
• Differences between primitive data type and object type
• Automatic garbage collection

•Constructors

•Modifiers (public, private and static)

• Instance and Class Variables and Methods

•Scope of Variables

•Use the this Keyword

OO Programming Concepts

data field 1

method n

data field n

method 1

An object

...

...

State

Behavior

Data Field

radius = 5

Method

findArea

A Circle object

Class and Objects

circle1: Circle

radius = 2

new Circle()

circlen: Circle

radius = 5

new Circle()

...

UML Graphical notation for classes

UML Graphical notation

for objects

Circle

radius: double

findArea(): double

UML Graphical notation for fields

UML Graphical notation for methods

Class Declaration

class Circle {

double radius = 1.0;

double findArea(){

return radius * radius * 3.14159;

}

}

Declaring Object Reference Variables

ClassName objectReference;

Example:

Circle myCircle;

Creating Objects

objectReference = new ClassName();

Example:

myCircle = new Circle();

The object reference is assigned to the object reference variable.

Declaring/Creating Objects
in a Single Step

ClassName objectReference = new ClassName();

Example:
Circle myCircle = new Circle();

Differences between variables of
primitive Data types and object types

1

c: Circle

radius = 1

Primitive type int i = 1 i

Object type Circle c c reference

Created using

new Circle()

Copying Variables of Primitive Data Types
and Object Types

1

c1: Circle

radius = 5

Primitive type assignment

i = j

Before:

i

2j

2

After:

i

2j

Object type assignment

c1 = c2

Before:

c1

c2

After:

c1

c2

c2: Circle

radius = 9

Garbage Collection

As shown in the previous figure, after the
assignment statement c1 = c2, c1 points to the
same object referenced by c2. The object
previously referenced by c1 is no longer useful.
This object is known as garbage. Garbage is
automatically collected by JVM.

Garbage Collection, cont

If you know that an object is no longer
needed, you can explicitly assign null to
a reference variable for the object. The
Java VM will automatically collect the
space if the object is not referenced by
any variable.

Accessing Objects

• Referencing the object’s data:

objectReference.data

myCircle.radius

• Invoking the object’s method:

objectReference.method

myCircle.findArea()

Constructors

Circle(double r) {

radius = r;

}

Circle() {

radius = 1.0;

}

myCircle = new Circle(5.0);

Constructors are a
special kind of
methods that are
invoked to construct
objects.

Constructors, cont.

A constructor with no parameters is referred to as a
default constructor.

· Constructors must have the same name as the class
itself.

· Constructors do not have a return type—not even
void.

· Constructors are invoked using the new operator
when an object is created. Constructors play the role of
initializing objects.

Visibility Modifiers and
Accessor Methods

By default, the class, variable, or data can be
accessed by any class in the same package.

public

The class, data, or method is visible to any class in any

package.

private

The data or methods can be accessed only by the declaring

class.

The get and set methods are used to read and modify private

properties.

Instance
Variables, and Methods

Instance variables belong to a specific instance.

Instance methods are invoked by an instance of

the class.

Class Variables, Constants,
and Methods

Class variables are shared by all the instances of the
class.

Class methods are not tied to a specific object.

Class constants are final variables shared by all the
instances of the class.

Class Variables, Constants,
and Methods, cont.

To declare class variables, constants, and methods,
use the static modifier.

Class Variables, Constants,
and Methods, cont.

CircleWithStaticVariable

-radius

-numOfObjects

+getRadius(): double

+setRadius(radius: double): void

+getNumOfObjects(): int

+findArea(): double

1 radius circle1:Circle

-radius = 1

-numOfObjects = 2

instantiate

instantiate

Memory

2

5 radius

numOfObjects

radius is an instance

variable, and

numOfObjects is a

class variable

UML Notation:

 +: public variables or methods

 -: private variables or methods

 underline: static variables or metods

circle2:Circle

-radius = 5

-numOfObjects = 2

Scope of Variables

•The scope of instance and class variables is the

entire class. They can be declared anywhere inside

a class.

• The scope of a local variable starts from its

declaration and continues to the end of the block

that contains the variable. A local variable must be

declared before it can be used.

The Keyword this

• Use this to refer to the current object.

• Use this to invoke other constructors of the object.

Array of Objects

Circle[] circleArray = new Circle[10];

An array of objects is actually an array of
reference variables. So invoking
circleArray[1].findArea() involves two
levels of referencing as shown in the
next figure. circleArray references to the
entire array. circleArray[1] references to
a Circle object.

Array of Objects, cont.

Circle[] circleArray = new

Circle[10];

reference

Circle object 0 circleArray[0]

…

circleArray

circleArray[1]

circleArray[9]

Circle object 9

Circle object 1

