
Introduction to Data Structures

Data Structures

• Data Structures A data structure is a scheme
for organizing data in the memory of a
computer. Some of the more commonly used
data structures include lists, arrays, stacks,
queues, heaps, trees, and graphs The way in
which the data is organized affects the
performance of a program for different tasks

Types of Data Structure

• There are basically two types of data structure

• Linear Data Structure: Stack, Queue,Linked
List

• Non-Linear Data Structure. Tree And Graph

Stack

• Stack is a linear data structure which works on
LIFO or FILO order i.e. First In Last Out or Last
In First Out.

• In Stack element is always added at top of
stack and also removed from top of the stack.

• Stack is useful in recursive function, function
calling, mathematical expression, calculation,
reversing the string etc.

Queue

• Queue is also a linear data structure which
work on FIFO order i.e. First In First Out.

• In queue element is always added at rear of
queue and removed from front of queue.

• Queue applications are in CPU scheduling,
Disk Scheduling, IO Buffers, pipes, file input
output.

Linked List

• A linked list is a linear collection of data
elements, in which linear order is not given by
their physical placement in memory.

• Elements may be added in front, end of list as
well as middle of list.

• Linked list may use for dynamic
implementation of stack and queue.

Trees

• A tree is a non linear data structure. a root value and
subtrees of children with a parent node, represented
as a set of linked nodes. Nodes can be added at any
different node. Tree applications includes:-

• Manipulate hierarchical data.

• Make information easy to search (see tree traversal).

• Manipulate sorted lists of data.

• As a workflow for compositing digital images for visual
effects.

• Router algorithms

Graphs

• A graph is a non linear data structure. A set of
items connected by edges. Each item is called
a vertex or node.

• Formally, a graph is a set of vertices and a
binary relation between vertices, adjacency.

• Graph applications:- finding shortest routes,
searching, social network connections,
internet routing.

Trees

• Length of a path =
number of edges

• Depth of a node N =
length of path from
root to N

• Height of node N =
length of longest
path from N to a
leaf

• Depth and height of
tree = height of root

A

B C D

E F

depth=0, height = 2

depth = 2, height=0

Definition

A tree is a set of nodes that is

a. an empty set of nodes, or

b. has one node called the root from which zero
or more trees (sub trees) descend.

Implementation of Trees

• Obvious Pointer-Based Implementation: Node with
value and pointers to children

A

B C D

E F

1st Child/Next Sibling Representation

• Each node has 2 pointers: one to its first child and
one to next sibling

A

B C D

E F

A

B C D

E F

Example Arithmetic Expression:

A + (B * (C / D))

Tree for the above expression:

Application: Arithmetic
Expression Trees

+

A *

B /

C D

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known
• Calculate by traversing tree (how?)

Traversing Trees

• Preorder: Root, then Children

– + A * B / C D

• Postorder: Children, then Root

– A B C D / * +

• Inorder: Left child, Root, Right child

– A + B * C / D

+

A *

B /

C D

Binary Trees

• Properties
Notation:

depth(tree) = MAX {depth(leaf)} = height(root)

– max # of leaves = 2depth(tree)

– max # of nodes = 2depth(tree)+1 – 1

– max depth = n-1

– average depth for n nodes =

(over all possible binary trees)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

n

Binary Search Tree
Dictionary Data Structure

4

121062

115

8

14

13

7 9

• Search tree property

– all keys in left subtree
smaller than root’s key

– all keys in right subtree
larger than root’s key

– result:
• easy to find any given

key

• inserts/deletes by
changing links

In Order Listing

visit left subtree

visit node

visit right subtree

2092

155

10

307 17

In order listing:
25791015172030

Finding a Node

Node find(Comparable x, Node

root)

{

if (root == NULL)

return root;

else if (x < root.key)

return find(x,root.left);

else if (x > root.key)

return find(x, root.right);

else

return root;

}

2092

155

10

307 17

Insert
Concept: proceed down tree as in Find; if new key not found,

then insert a new node at last spot traversed

void insert(Comparable x, Node root) {

// Does not work for empty tree – when root is
NULL

if (x < root.key){

if (root.left == NULL)

root.left = new Node(x);

else insert(x, root.left); }

else if (x > root.key){

if (root.right == NULL)

root.right = new Node(x);

else insert(x, root.right); } }

Time to Build a Tree

Suppose a1, a2, …, an are inserted into an initially empty BST:

1. a1, a2, …, an are in increasing order

2. a1, a2, …, an are in decreasing order

3. a1 is the median of all, a2 is the median of elements
less than a1, a3 is the median of elements greater
than a1, etc.

4. data is randomly ordered

Analysis of BuildTree

• Increasing / Decreasing: (n2)
1 + 2 + 3 + … + n = (n2)

• Medians – yields perfectly balanced tree
(n log n)

• Average case assuming all input sequences
are equally likely is (n log n)
– equivalently: average depth of a node is log n

Total time = sum of depths of nodes

FindMin/FindMax

Node min(Node root) {

if (root.left == NULL)

return root;

else

return min(root.left);

}

2092

155

10

307 17

Successor

Find the next larger node
in this node’s subtree.

– not next larger in entire tree

Node succ(Node root) {

if (root.right == NULL)

return NULL;

else

return min(root.right);

}

2092

155

10

307 17

24

Deletion - Leaf Case

2092

155

10

307 17

Delete(17)

Deletion - One Child Case

2092

155

10

307

Delete(15)

Deletion - Two Child Case

3092

205

10

7

Delete(5)

replace node with value guaranteed to be between the left and right subtrees:
the successor

Deletion - Two Child Case

3092

205

10

7

Delete(5)

always easy to delete the successor – always has either 0 or 1 children!

Deletion - Two Child Case

3092

207

10

7

Delete(5)

Finally copy data value from deleted successor into original node

