
Introduction to Algorithms

Design and Analysis of Algorithms

• Analysis: predict the cost of an algorithm in

terms of resources and performance

• Design: design algorithms which minimize the

cost

• Algorithm: An algorithm is a step-by-step

procedure for solving a problem in a finite

amount of time.

The problem of sorting

Input: sequence a1, a2, …, an of numbers.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation a'1, a'2, …, a'n such

that a'1  a'2 
…  a'n .

Insertion sort

INSERTION-SORT (A, n) ⊳ A[1 . . n]

for j ← 2 to n

do key ← A[j]

i ← j – 1

while i > 0 and A[i] > key

do A[i+1] ← A[i]

i ← i – 1

A[i+1] = key

“pseudocode”

n

Example of insertion sort

8 2 4 9 3 6

Example of insertion sort

8 2 4 9 3 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

Insertion sort analysis

Worst case: Input reverse sorted.

 



n

j

njnT
2

2)()(

Average case: All permutations equally likely.

 



n

j

njnT
2

2)2/()(

Is insertion sort a fast sorting algorithm?

• Moderately so, for small n.

• Not at all, for large n.

[arithmetic series]

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Major Simplifying Convention:
Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

TA(n) = time of A on length n inputs

• Generally, we seek upper bounds on the
running time, to have a guarantee of
performance.

Kinds of analysis

Worst-case: (usually)

T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes)

T(n) = expected time of algorithm
over all inputs of size n.

• Need assumption of statistical
distribution of inputs.

Best-case: (NEVER)

• Cheat with a slow algorithm that
works fast on some input.

-notation

• Drop low-order terms; ignore leading constants.

• Example: 3n3 + 90n2 – 5n + 6046 = (n3)

DEF:
(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0  c1 g(n)  f (n)  c2 g(n)

for all n  n0 }

Basic manipulations:

Asymptotic performance

n

T(n)

n0

.
• Asymptotic analysis is a useful tool

to help to structure our thinking
toward better algorithm

• We shouldn’t ignore

asymptotically slower algorithms,

however.

• Real-world design situations often

call for a careful balancing

When n gets large enough, a (n2) algorithm

always beats a (n3) algorithm.

Insertion sort analysis

Worst case: Input reverse sorted.

 



n

j

njnT
2

2)()(

Average case: All permutations equally likely.

 



n

j

njnT
2

2)2/()(

Is insertion sort a fast sorting algorithm?

• Moderately so, for small n.

• Not at all, for large n.

[arithmetic series]

Big-Oh Notation

 Given functions f(n) and g(n), we say that f(n) is

O(g(n)) if there are positive constants

c and n0 such that

f(n)  cg(n) for n  n0

 Example: 2n + 10 is O(n)

 2n + 10  cn

 (c  2) n  10

 n  10/(c  2)

 Pick c 3 and n0 10

Big-Oh Example

• Example: the function n2 is not O(n)

– n2  cn

– n  c

– The above inequality cannot be satisfied since c must be

a constant

Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the growth

rate of a function

• The statement “f(n) is O(g(n))” means that the growth rate

of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions according

to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

Big-Oh Rules

• If is f(n) a polynomial of degree d, then f(n)

is O(nd), i.e.,

1.Drop lower-order terms

2.Drop constant factors

• Use the smallest possible class of functions

– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class

– Say “3n + 5 is O(n)” instead of “3n + 5 is

O(3n)”

Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the
running time in big-Oh notation

• To perform the asymptotic analysis
– We find the worst-case number of primitive operations executed

as a function of the input size

– We express this function with big-Oh notation

• Example:

– We determine that algorithm arrayMax executes at most 7n  1
primitive operations

– We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are eventually
dropped anyhow, we can disregard them when counting
primitive operations

Other Notations

big-Omega

 f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1
such that f(n)  c•g(n) for n  n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 0 and an integer
constant n0  1 such that c’•g(n)  f(n)  c’’•g(n) for n  n0

little-oh

 f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant n0  0
such that f(n)  c•g(n) for n  n0

little-omega

 f(n) is (g(n)) if, for any constant c > 0, there is an integer constant n0  0
such that f(n)  c•g(n) for n  n0

