Heat Transfer



Heat Transfer

* Heat always moves from a warmer place to a
cooler place.

* Hot objects in a cooler room will heat up to
room temperature.

* Cold objects in a warmer room will cool to
room temperature.



Modes of Heat Transfer

* Heat transfers in three ways:
—Conduction
—Convection
—Radiation



Conduction is a mode of heat transfer which mainly take place in solids.
When we heat a metal strip at one end, the heat travels to the other end.

As we heat the metal, the particles vibrate, these vibrations
make the adjacent particles vibrate, and so on and so on,
the vibrations are passed along the metal and so is the heat.
We call this conduction.



Conduction in Metals are different

The outer electrons of metal atoms
are free to move.

When the metal is
heated, this ‘sea of
electrons’ gain kinetic
energy and transfer it
throughout the metal.

Insulators, such as wood and do not have
this ‘sea of electrons’ which is why they do not
conduct heat as well as in metals.




Why does metal feel colder than wood, if they

are both at the same temperature?

Metal is a conductor, wood is an insulator. Metal
conducts the heat away from our hands. Wood does
not conduct the heat away from our hands as well
as the metal, so the wood feels warmer than the

metal.




Convection

This is the mode of heat transfer which take place in fluids.
What happens to the particles in a liquid or a gas when we
heat them?

The particles spread out and
become less dense.

-

This effects fluid movement.




Fluid movement

Cooler(more dense) fluids
sink through warmer(less
dense) fluids.

In other words, warmer fluid particles
rise up and cooler particles sink.

This phenomenon leads to
circulation of fluid particles and is
called as convection currents.




Example of convection

Where is the Freezer
freezer compartment
compartment
put in a fridge?
It is warmer
at the bottom,
It is put at the so this
top, because warmer air
cool air sinks, rises and a
so it cools the convection

food on the way
down.

current is set
up.




RADIATIONS

How does heat energy get
from the Sun to the Earth?

There are no particles
between the Sun and the
Earth so it CANNOT
travel by conduction or
by convection.

RADIATION




Radiation travels in straight lines

True/Felse

Radiation can travel through a vacuum
True/=atse

Radiation requires particles to travel
Lade/False

Radiation travels at the speed of light
True/Fetee



ONE-DIMENSIONAL STEADY STATE CONDUCTION

Examples of One-dimensional Conduction:

Plate with Energy Generation and
Variable Conductivity
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Example 2.1: Plate with internal energy generation

q" and a variable k —
k=k0(1—7/T) m
oocl 4 Yooc
Find temperature distribution.
0fF— X
(1) Observations L
* Variable k£ Fig. 2.1

* Symmetry
* Energy generation
* Rectangular system

* Specified temperature at boundaries



(2) Origin and Coordinates

Use a rectangular coordinate system

(3) Formulation
(1) Assumptions
* One-dimensional

* Steady
* [sotropic
* Stationary

* Uniform energy generation
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(11) Governing Equation

Eq. (1.7):
d(kd_Tj qm:0
dx\ dx
k=k,(1-yT)
(a) into eq. (2.1)
d 1,8 |, 4" _
dx{(l yT)% } =0

(111) Boundary Conditions.

Two BC are needed:

2.1)

(a)

(b)
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T(0)=0
T(L)=0

(4) Solution
Integrate (b) twice

"

T+ZT2:— 1 x2+C1x+C2
2 2k

BC (¢) and (d)

(c)
(d)

(e)

()



Solving for T

T:li\/lz_q Lx[l_i}
y \7v"  7rk, L

Take the negative sign

(2)

(h)

(1)



(5) Checking

e Dimensional check

* Boundary conditions check

* Limiting check:

* Symmetry Check:

dr 1

dx 2

1

m

/4

2

q Lx(x_
vk, L

1)

1

2

¢"=0,T =0

(

Setting x = L/2 in (j) gives dT/dx =0

q”’L

2x

vk

0

),

-1) ()



* Quantitative Check

Conservation of energy and symmetry:

quL
0)=—
q(0) ,
mAL
q(L)=q ,

Fourier’slaw at x=0andx=L

dT(O)

q(0) = —k,[1-yT(0)]

quL
2

(k)

(1)

(m)



dT(L) _q"AL
2

(n)

q(L)=—k,[1-yT(L)]

(6) Comments
Solution to the special case:

k = constant: Set ¥ =0

2.1.2 Radial Conduction in a Composite
Cylinder with Interface Friction
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Example 2.2: Rotating shaft in sleeve, frictional

heat at interface, convection on

outside. Conduction in radial direction.
h’ TOO

Determine the temperature
distribution in shaft and sleeve.

(1) Observations

Fig. 2.2

* Composite cylindrical wall

* Cylindrical coordinates

* Radial conduction only



* Steady state:

Energy generated = heat conducted through the
sleeve

* No heat 1s conducted through the shaft

* Specified flux at inner radius of sleeve, convection
at outer radius

(2) Origin and Coordinates
Shown 1n Fig. 2.2



(3) Formulation
(1) Assumptions
* One-dimensional radial conduction
* Steady
* [sotropic
* Constant conductivities
* No energy generation
* Perfect interface contact
* Uniform frictional energy flux

* Stationary



(11) Governing Equation

Shaft temperature 1s uniform. For sleeve: Eq. (1.11)

dr

d| dT,]
’/'—
dr |

(111) Boundary Conditions

Specified flux at R, :

q; =~k

dTl (Rs)

dr

(2.2)

(a)
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Convection at R, :

dT; (R
gy TR i (R Y- (b)
dr
(4) Solution
Integrate eq. (2.2) twice
T1=Cllnr+C2 (C)
BC give C, and C,
"R
€ =-"1 @



and

(d) and (e) 1nto (c)
q ;" Rs R kl

Tl(r):Too +

kl r hR

hR ” / k = Biot number

(e)

()

Shaft temperature 7,: Use interface boundary condition

T, (r)=T,(R,) = T (R)

(2)



Evaluate (f) at » = R and use (g)

" R
Ty(r) =T, +7. =

ky

(5) Checking

e Dimensional check

R

In—2 +

R

* Boundary conditions check

* Limiting check: q;.' =0

(6) Comments

* Conductivity of shaft does not play a role

S

ki

hRO —

Fig. 2.2




* Problem can also be treated formally as a
composite cylinder. Need 2 equations and 4 BC.

2.1.1 Composite Wall with Energy Generation

Example 2.1: Plate 1 generates heatat  ¢", Plate 1

1s sandwiched between two plates. Outer

1, A4
I i | surfaces of two plates at T,.
I — .
- 0 ’;1 Find the temperature distribution in the
2 2
= three plates.
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(1) Observations rox,

* Composite wall | L, k, |
A ¢ 1
* Use re.ctangular i 0 k
coordinates L ,
* Symmetry: Insulated L -
center plane Fig. 2.3

* Heat flows normal to plates
* Symmetry and steady state:

Energy generated = Energy conducted out

(2) Origin and Coordinates
Shown 1n Fig. 2.3



(3) Formulation
(1) Assumptions
* Steady
* One-dimensional
* [sotropic
* Constant conductivities
* Perfect interface contact

* Stationary

(11) Governing Equations

Two equations:
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2 " d 2 T.

Chd"_y “hoo o

dx? k dx

(111) Boundary Conditions
Four BC:
Symmetry:

MO _ ©
dx

Interface:

dx dx



Ty(Ly/2)=Ty(L /2)
Outer surface:

Ty(Ly 12+ Ly) =T,

(4) Solution

Integrate (a) twice

n

Tl(x):_zqk x’+Ax+B
1

Integrate (b)
I,(x)=Cx+D

(e)

()

(2)

(h)



Four BC give 4 constants: Solutions (g) and (h) become

my2 2
T(x)=T,+ 1 |1 ks _x (i)
2k, _4 kyL, L%_
my2 [ ]
Tz(x)=T0+qu 1 ha_x ()
2y |2 Ly Ly
(5) Checking

" L2
k

* Dimensional check: units of q




¢"(W/m>)L*(m*)
k(W/m=°C)

C

* Boundary conditions check

* Quantitative check:

1/2 the energy generated in center plate = Heat
conductedat x=L;/2

ﬂqm _ _kl d]i(Ll /2)

2 dx

(k)



(1) mto (k)

—k dTl(Ll/z): L]qm
! dx 2

Similarly, 1/2 the energy generated in center plate
= Heat conducted out

Ly dT(h/2+ 1)

2 dx
() into (1) shows that this condition 1s satisfied.

(1)

* Limiting check:
(1) If qm = 0, then TI(X) = Tz(X) = TO'

() If L; =0 then (x)=T,.



(6) Comments

Alternate approach: Outer plate with a specified

flux at X = L1 / 2 and a specified temperature at

x:L1/2+L2.

2.2 Extended Surfaces - Fins
2.2.1 The Function of Fins

Newton's law of cooling:

qs = hAs(Ts _Too)

(2.3)
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Options for increasing ¢ :

* Increase A
* Lower 1,

* Increase A

Examples of Extended Surfaces (Fins):

® Thin rods on condenser 1n back of refrigerator

* Honeycomb surface of a car radiator
* Corrugated surface of a motorcycle engine

* Disks or plates used in baseboard radiators



2.2.2 Types of Fins

(a) constant area (b) variable area
straight fin straight fin

¢

(¢) pin fin (d) annular fin

Fig. 2.5
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Terminology and types

* Fin base

* Fin tip

e Straight fin

* Variable cross-sectional area fin
* Spine or pin fin

* Annular or cylindrical fin

2.2.3 Heat Transfer and Temperature
Distribution 1n Fins
* Heat flows axially and laterally (two-dimensional)

* Temperature distribution 1s two-dimensional



2.2.4 The Fin Approximation

Neglect lateral temperature V') T,
variation = | ‘
%ﬂ €
T~T(x) = <7 ]
L |
—
Criterion: h 1,
Biot number = Bi Fig. 2.6
Bi=hol/k<<1 (2.4)

~ 0/k Internal resistance

Bi = =
1/ h external resistan ce



2.2.5 The Fin Heat Equation: Convection at
Surface

(1) Objective:
Determine fin heat transfer rate.

Need temperature distribution.

(2) Procedure:

Formulate the fin heat equation.

Apply conservation of energy.

e Select an origin and coordinate axis x.
*Assume Bi<0.1,.. T =T(x)

e Stationary material, steady state
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d.
d.

S

(a)
Fig. 2.7

Conservation of energy for the element dx:

E, +E ¢ = E,, (a)
E,=q, (b)
E out =4 + dq dx +dq, (c)



dq, N —
(b) (c)
(b) and (c) 1nto (a)
E, = 44 dx + dq (d)
& dx ‘

Fourier's law and Newton’s law

g.=—ka, T @)
dx
dqg.=hT -T,)dA, (f)

Energy generation



E, =q"A.(x)dx ()

(¢), (f) and (g) into (d)
d| dT
— | kA (x)— |dx—h(T-T )dA +q"A (x)dx =0
de| ¢ dx ’ )
- = (2.52)
Assume constant &

2 m
d T 1 dA. dT  h (T—TOO)dAS+q _0
dxz A (x) dx dx kA -(x) dx k

(2.5b)

* (2.5b) 1s the heat equation for fins

* Assumptions:
(1) Steady state
(2) Stationary



(3) Isotropic
(4) Constant £
(5) No radiation

(6) Bi << 1

*A,., dA, /dx, and dA /dx are determined from
the geometry of fin.

2.2.6 Determination of dA4_/dx

From Fig. 2.7b
dA; = C(x)ds (a)

C (x)= circumference

ds = slanted length of the element
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For a right triangle

ds = [dx2 + a’yk,,,z]l/2 (b)
(b) mnto (a)
- 2—1/2
s _ col 1+ (dyS) (2.6a)
dx dx
For dy,/dx <<1
a4, = C(x) (2.6b)
dx

2.2.7 Boundary Conditions
Need two BC
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2.2.8 Determination of Fin Heat Transfer
Rate qr:

hT, qs

qs

q(0) h, TOO q

Fig. 2.8

Conservation of energy for ¢" =0

qr=4q(0)=q

Two methods to determine q f o

(a)
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(1) Conduction at base.
Fourier's law at x =0

1y =9 =-ka, @ e
dx
(2) Convection at the fin surface.
Newton's law applied at the fin surface
ap=q,=|, HT)-T M4, @38

\)

* Fin attached at both ends: Modify eq. (2.7)
accordingly

* Fin with convection at the tip: Integral 1n eq. (2.8)
includes tip



* Convection and radiation at surface: Apply eq. (2.7).

Modify eq. (2.8) to include heat exchange by
radiation.

2.2.9 Applications: Constant Area Fins with
Surface Convection
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A. Governing Equation

Use eq. (2.5b). Set h,T., C
alac=0 o ©
T b1 A
Y = constant ’ Fio. 2.0 ¢
dy. /dx=0 =
Eq. (2.6a)
dA, /dx = C (b)
(a) and (b) mto eq. (2.5b)
2
T _hC 0 134 2.9

dx* kA,
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Rewrite eq. (2.9)

O=T-T, ©
w2 hC (d)
kA,

Assume T, = constant, (¢) and (d) into (2.9)

2
d“o
__7_nﬂ9=0 (2.10)
dx
Valid for:
(1) Steady state

(2) constant £, A.and T,



(3) No energy generation
(4) No radiation

(5) Bi <<1
(6) Stationary fin

B. Solution

Assume: h = constant
O(x) = Ajexp(mx)+ A,exp(—mx) (2.11a)

0(x) = Bysinhmx + B,coshmx  (2.11b)



C. Special Case (1):
* Finite length
* Specified temperature at base, convection at tip

Boundary conditions:

h,T, C
0o— X h;
Fig. 2.10 i
T(0)=T, (e)
D h|T(L)-T,] (B

dx
0(0) =0, (h)



_ dG(L)
dx
Two BC give B, and B,
O(x) _T(x)-T,
0, T,-T,
~ coshm(L— x)+(h, /mk )sinh m(L — x)
coshmL +(h, /mk )sinh mL
Eq. (2.7) gives ¢ f
(T, —T,)[sinhmL + (h,/mk)cosh mL]

=h,0(L) (1)

(2.12)

—[kA.Ch]'"
1y =lkACH cosh mL + (h,/mk) sinh mL
(2.13)



C. Special Case (11):
* Finite length

* Specified temperature at base, insulated tip

BC at tip: p
do(L) _

dx

0

Set h, =0 eq. (2.12)
O(x) T(x)-T, coshm(L-x)
o, T,-T, cosh mL

Set h, =0 eq. (2.13)
g = ka.cn]*(T, - T, )tanh mL

)

(2.14)

(2.15)



2.2.10 Corrected Length L

* Insulated tip: simpler solution

e Simplified model: Assume insulated tip, compensate by
increasing length by AL,

* The corrected length is L,
L. =L+ALC (2.16)
* The correction increment AL . depends on the
geometry of the fin:
Increase in surface area dueto AL, = tip area

Circular fin: "
wry, =2xr, AL,



AL, =r, /2
Square bar of side ¢
AL, =t/4

2.2.11 Fin Efficiency 77 ¢

Detinition

q
np=—7- (2.17)

qmax

= hAs(To _Too)

qmax

As = total surface area



Eq. (2.17) becomes

ne= 1f (2.18)
4 hAS(TO _Too)




Radiation Heat Transfer



Blackbody Radiation
-

e Blackbody — a perfect emitter & absorber of radiation

e Emits radiation uniformly in all directions — no
directional distribution — it's diffuse

e Joseph Stefan (1879)- total radiation emission per
unit time & area over all wavelengths and in all

directions: E, = T4 (W/mz)

e o=Stefan-Boltzmann constant =5.67 x10-8 W/m2K#




Planck’s Distribution Law
«a " //////7]

e Sometimes we’re interested in radiation at a
certain wavelength

e Spectral blackbody emissive power (Ey,) =
“amount of radiation energy emitted by a
blackbody at an absolute temperature T per
unit time, per unit surface area, and per unit
wavelength about the wavelength A.”



Planck’s Distribution Law
«a " //////7]

e For a surface in a vacuum or gas

Cl 2
Eb}b(T): ks[exp(Cz/?»T)—l] (W/m -um)

where

C, = 2mthc? =3.742x10° W -um* /m?

C, =he, [k =1.439x10" pm-K

k =13805x10"% J/K = Boltzmann's constant

e Other media: replace C, with C,/n2

e Integrating this function over all A gives us the equation
for E.



1014

10121

1019

10°

1- Violet

NS

Red

e—— Visible light region

5800 K {Solar)
“\ 4000 K
\
o Locus of
- maximum power
\\ N\ 2000 K AT = 2898 pm-K
\
X 1000 K

100K

0.01

Radiation
Distribution

e Radiation is a
continuous function of
wavelength

e Radiation increases
with temp.

e At higher temps, more
radiation is at shorter
wavelengths.

e Solar radiation peak is
In the visible range.



Wien’s Displacement Law
S

e Peak can be found for different temps using
Wien's Displacement Law:

(A7) =2897.5um-K

max power

e Note that color is a function of absorption &
reflection, not emission



Blackbody Radiation Function
S

e \We often are interested in radiation energy emitted
over a certain wavelength.

E; 4

Jl'I
E&‘ 0- lq{T} =‘[]Em_{T}dl

Eu(M

)

N ._

1, x

e This is a tough integral to do!



Blackbody Radiation Function
S

e Use blackbody radiation
function, F, Epf

}EM (T)an
F(T)="

-

GT4

e If we want radiation
between A, & A,,

Fy -, (T)=F, (T)-F3, (T)



Surface Emission

Blackbody, T - Blackbody, ;™\

_~ Real surface, T

Real surface
— I (A, 8,7 =

E\(LT) =) By, A T)

(@) (b)

FIcURE 12.16 Comparison of blackbody and real surface emission.
(a) Spectral distribution. (b) Directional distribution.



Surface Emission
«_o«L._ 0000777

Spectral, directional emissivity

Total, directional emissivity

Spectral, hemispherical emissivity

2o (a2
J J I, (A, 0,¢,T)cos 0sin 0 db do
0 0

el 1) = 2m (w2
f L, ,(A, T) cos 0 sin 6 d6 d¢p
0 0



Surface Emission
«. 07

Spectral, hemispherical emissivity

Substituting spectral emissive power

2o (@2
f f 1, (A, 0,0, T)cos 0sin 0 df do
0 Jo

&, T) = 2w (72
f f I, (A, T)cos @ sin 6 dB d¢
0o Jo



Surface Emission
«. 07

Total, directional emissivity

: : L. Normal emissivity predictable
Total, hemispherical emissivity YP

Nonconductor |

Conductor o /\ _

0 45 90
6{deg)




Spectral, normal emissivity

1;0 ; B : 1 i
; § "_ - .“ |
(S{ 0-8 e et E JES I S 1 % : """""""" =
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£ -+ Silicon _ _ e &%
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ﬁ 0.6 f-ibemgs — 1000 K ; i ; 1 ‘, I o
E | -l \LN . ' . “ Y Aluminum | _
® e R ' v ¥ o oxide, :
E - —t— ] : K v % 1400K L
— o W A ] % .-—i1 | { H
S 04}~ NN T | W o s 4
N i* i £ i
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& 0.2 W -J... 4 11—, N.._;T i i %
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5 | _ [ 1600K RERNi
0.1 0.2 0.4 0.6 1 2 4 6 10 20 40 60 100

Wavelength, A(um)

FIcURE 12.18 Spectral dependence of the spectral, normal emissivity &, , of selected
materials.



Total, normal emissivity
S

- T T ]
Silicon carbide

0.8 e
2 Yo, »~7 Stainless steel, — .
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,6 0.6 .... = v R * § :
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FIGURE 12.19 Temperature dependence of the total, normal emissivity ¢, of selected
materials.



Total, normal emissivity

0 0.050.10 0.15

0 0.2 0.4 0.6 0.8 1.0
Total, normal emissivity, €,

FiGURE 12.20 Representative values of the total, normal
emissivity &,,.



Absorption, Reflection, and
Transmission

R

G)L — G)t,ref i G}i,aba + G)t,tr

eflection
G [rradiation
Aref
ffrﬁ;abs + Gl ref T G?L tr

Semitransparent — W Absorption

medium

G?\.‘.abs ¥

Transmission
Gl,tr

FIcure 12.21

Absorption, reflection, and
transmission processes associated
with a semitransparent medinm.



Absorptivity
-

Spectral, directional absorptivity

Spectral, hemispherical absorptivity

Total, hemispherical absorptivity




Reflectivity
-

Spectral, directional reflectivity

Spectral, hemispheri

Total, hemispherical reflectivity



Reflectivity

8. =6
Incident R{f“fde‘jf Incident | °  Reflected
ray faiatiall o ray ray
uniform 9. 0
intensity 1 2

FIGURE 12.22 Diffuse and specular reflection.



Transmissivity
S

Spectral, hemispherical transmissivity

Total, hemispherical reflectivity




Special Considerations
-

Semitransparent medium
pra+t=1
Opaque

pta=1



Spectral, normal reflectivity, p, ,
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FIGURE 12.23 Spectral dependence of the spectral, normal absorptivity «;, , and
reflectivity p, , of selected opaque materials.

Spectral, normal absorptivity, « ,



Spectral transmissivity, 7,

FiGURE 12.24. Spectral dependence of the spectral transmissivities 7, of selected
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Kirchhoff’s Law

FIGURE 12.25
Radiative exchange in an isothermal
enclosure.

No real surface can have an emissive power exceeding that of a
black surface at the same temperature.



