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MATRICES - INTRODUCTION

Matrix algebra has at least two advantages:

•Reduces complicated systems of equations to simple expressions

•Adaptable to systematic method of mathematical treatment and 
well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or 
rectangular array enclosed by two brackets
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Properties:

•A specified number of rows and a specified number of
columns

•Two numbers (rows x columns) describe the dimensions
or size of the matrix.
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A matrix is denoted by a bold capital letter and the elements 
within the matrix are denoted by lower case letters 

e.g. matrix [A] with elements aij
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Where i goes from 1 to m and j goes from 1 to n

Amxn=
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TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of 
columns is always 1
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TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row
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TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not equal 
to the number of columns
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TYPES OF MATRICES
4. Square matrix

The number of rows is equal to the number of columns

(a square matrix A has an order of m)
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The principal or main diagonal of a square matrix is composed of all 
elements aij for which i=j
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TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on 
the main diagonal
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TYPES OF MATRICES

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal
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TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero
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TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main
diagonal are all zero
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TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main diagonal are all
zero

i.e. aij = 0 for all i > j
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TYPES OF MATRICES

A square matrix whose elements above the main diagonal are all 
zero

8b. Lower triangular matrix

i.e. aij = 0 for all i < j
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TYPES OF MATRICES
9. Scalar matrix

A diagonal matrix whose main diagonal elements are equal to the
same scalar

A scalar is defined as a single number or constant
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EQUALITY OF MATRICES

Two matrices are said to be equal only when all 
corresponding elements are equal

Therefore their size or dimensions are equal as well
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Some properties of equality:
•If A = B, then B = A for all A and B
•If A = B, and B = C, then A = C for all A, B and C
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ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same size 
yields a matrix C of the same size.

ijijij bac 

Matrices of different sizes cannot be added or subtracted.
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Commutative Law:
A + B = B + A

Associative Law:
A + (B + C) = (A + B) + C = A + B + C




































972

588

324

651

652

137

A
2x3

B
2x3

C
2x3



MATRICES - OPERATIONS

A + 0 = 0 + A = A

A + (-A) = 0 (where –A is the matrix composed of –aij as elements)
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SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single element)

Let k be a scalar quantity; then

kA = Ak

Ex.  If k=4 and 
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Properties:

• k (A + B) = kA + kB

• (k + g)A = kA + gA

• k(AB) = (kA)B = A(k)B

• k(gA) = (kg)A
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MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to 
be possible

i.e. the number of columns of A must equal the number of rows 
of B

Example.

A x     B =      C

(1x3)     (3x1)      (1x1)
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B x    A =     Not possible!

(2x1)   (4x2)

A x    B =    Not possible!

(6x2)    (6x3)

Example

A x       B =    C

(2x3)        (3x2)         (2x2)



MATRICES - OPERATIONS
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Successive multiplication of row i of A with column j of 
B – row by column multiplication
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Assuming that matrices A, B and C are conformable for 

the operations indicated, the following are true:

1. AI = IA = A

2. A(BC) = (AB)C = ABC - (associative law)

3. A(B+C) = AB + AC - (first distributive law)

4. (A+B)C =  AC + BC - (second distributive law)

Caution!

1. AB not generally equal to BA, BA may not be conformable

2. If AB = 0, neither A nor B necessarily = 0

3. If AB = AC, B not necessarily = C
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AB not generally equal to BA, BA may not be conformable
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If AB = 0, neither A nor B necessarily = 0
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TRANSPOSE OF A MATRIX

If :





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Then transpose of A, denoted AT is:

T
jiij aa  For all i and j
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To transpose:

Interchange rows and columns

The dimensions of AT are the reverse of the dimensions of A
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2 x 3

3 x 2
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Properties of transposed matrices:

1. (A+B)T = AT + BT

2. (AB)T = BT AT

3. (kA)T = kAT

4. (AT)T = A
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1. (A+B)T = AT + BT
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
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
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
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

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(AB)T = BT AT
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
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
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SYMMETRIC MATRICES

A Square matrix is symmetric if it is equal to its 
transpose:

A = AT






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
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
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db

ba
A

T



MATRICES - OPERATIONS

When the original matrix is square, transposition does not affect 
the elements of the main diagonal





















db

ca
A

dc

ba
A

T

The identity matrix, I, a diagonal matrix D, and a scalar matrix, K, 
are equal to their transpose since the diagonal is unaffected.
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INVERSE OF A MATRIX

Consider a scalar k.  The inverse is the reciprocal or division of 1 
by the scalar.

Example:

k = 7 the inverse of k or k-1 = 1/k = 1/7

Division of matrices is not defined since there may be AB = AC
while B = C

Instead matrix inversion is used.  

The inverse of a square matrix, A, if it exists, is the unique matrix 
A-1 where:

AA-1 = A-1 A = I
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Example:


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
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
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
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
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
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
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
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Because:
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Properties of the inverse:

11

11

11

111

1
)(

)()(

)(

)(

















A
k

kA

AA

AA

ABAB

TT

A square matrix that has an inverse is called a nonsingular matrix

A matrix that does not have an inverse is called a singular matrix

Square matrices have inverses except when the determinant is zero

When the determinant of a matrix is zero the matrix is singular
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DETERMINANT OF A MATRIX

To compute the inverse of a matrix, the determinant is required

Each square matrix A has a unit scalar value called the 
determinant of A, denoted by det A or |A|

56

21

56

21













A

AIf

then



MATRICES - OPERATIONS

If A = [A] is a single element (1x1), then the determinant is 
defined as the value of the element

Then |A| =det A =  a11

If A is (n x n), its determinant may be defined in terms of  order 
(n-1) or less.
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MINORS
If A is an n x n matrix and one row and one column are deleted, 
the resulting matrix is an (n-1) x (n-1) submatrix of A.  

The determinant of such a submatrix is called a minor of A and 
is designated by mij , where i and j correspond to the deleted

row and column, respectively.

mij is the minor of the element aij in A.
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

















333231

232221

131211

aaa

aaa

aaa

A

Each element in A has a minor

Delete first row and column from  A . 

The determinant of the remaining 2 x 2 submatrix is the minor 
of a11

eg.

3332

2322
11 aa

aa
m 
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Therefore the minor of a12 is:

And the minor for a13 is:

3331

2321
12 aa

aa
m 

3231

2221
13 aa

aa
m 
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COFACTORS

The cofactor Cij of an element aij is defined as:

ij
ji

ij mC  )1(

When the sum of a row number i and column j is even, cij = mij and 
when i+j is odd, cij =-mij

1313
31
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1212
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1111
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11

)1()3,1(

)1()2,1(

)1()1,1(

mmjic

mmjic

mmjic















MATRICES - OPERATIONS

DETERMINANTS CONTINUED

The determinant of an n x n matrix A can now be defined as

nncacacaAA 1112121111det  

The determinant of A is therefore the sum of the products of the 
elements of the first row of A and their corresponding cofactors.

(It is possible to define |A| in terms of any other row or column 
but for simplicity, the first row only is used)



MATRICES - OPERATIONS

Therefore the 2 x 2 matrix :











2221

1211

aa

aa
A

Has cofactors :

22221111 aamc 

And:
21211212 aamc 

And the determinant of A is: 

2112221112121111 aaaacacaA 



MATRICES - OPERATIONS

Example 1:











21

13
A

5)1)(1()2)(3( A



MATRICES - OPERATIONSFor a 3 x 3 matrix:



















333231

232221

131211

aaa

aaa

aaa

A

The cofactors of the first row are:

31223221
3231

2221
13

31233321
3331

2321
12

32233322
3332

2322
11

)(

aaaa
aa

aa
c

aaaa
aa

aa
c

aaaa
aa

aa
c









MATRICES - OPERATIONS

The determinant of a matrix A is:

2112221112121111 aaaacacaA 

Which by substituting for the cofactors in this case is:

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA 



MATRICES - OPERATIONS

Example 2:





















101

320

101

A

4)20)(1()30)(0()02)(1( A

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA 



MATRICES - OPERATIONS
ADJOINT MATRICES

A cofactor matrix C of a matrix A is the square matrix of the same 
order as A in which each element aij is replaced by its cofactor cij . 

Example:













43

21
A













12

34
C

If

The cofactor C of A is



MATRICES - OPERATIONS

The adjoint matrix of A, denoted by adj A, is the transpose of its 
cofactor matrix

TCadjA
It can be shown that:

A(adj A) = (adjA) A = |A| I

Example:








 
















13

24

10)3)(2()4)(1(

43

21

TCadjA

A

A



MATRICES - OPERATIONS

IadjAA 10
100

010

13

24

43

21
)( 
















 












IAadjA 10
100

010

43

21

13

24
)( 


























 




MATRICES - OPERATIONS

USING THE ADJOINT MATRIX IN MATRIX INVERSION

A

adjA
A 1

Since 

AA-1 = A-1 A = I

and
A(adj A) = (adjA) A = |A| I

then



MATRICES - OPERATIONS

Example








 








 


1.03.0

2.04.0

13

24

10

11A










 43

21
A = 

To check AA-1 = A-1 A = I

IAA

IAA



























 


















 
















10

01

43

21

1.03.0

2.04.0

10

01

1.03.0

2.04.0

43

21

1

1



MATRICES - OPERATIONS

Example 2























121

012

113

A

|A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2

),1(

),1(

),1(

31

21

11







c

c

c

The determinant of A is

The elements of the cofactor matrix are

),2(

),4(

),2(

32

22

12







c

c

c

),5(

),7(

),3(

33

23

13







c

c

c



MATRICES - OPERATIONS

























521

741

321

C

The cofactor matrix is therefore

so

























573

242

111
TCadjA

and


















































5.25.35.1

0.10.20.1

5.05.05.0

573

242

111

2

11

A

adjA
A



MATRICES - OPERATIONS

The result can be checked using

AA-1 = A-1 A = I

The determinant of a matrix must not be zero for the inverse to 
exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants



MATRIX INVERSION

Simple 2 x 2 case



SIMPLE 2 X 2 CASE

Let











dc

ba
A

and











zy

xw
A 1

Since it is known that

A A-1 = I

then



























10

01

zy

xw

dc

ba



SIMPLE 2 X 2 CASE

Multiplying gives

1

0

0

1









dzcx

dycw

bzax

byaw

bcadA 

It can simply be shown that



SIMPLE 2 X 2 CASE

thus

A

d

bcda

d
w

d

cw

b

aw
d

cw
y

b

aw
y

















1

1



SIMPLE 2 X 2 CASE

A

b

bcda

b
x

d

cx

b

ax
d

cx
z

b

ax
z

















1

1



SIMPLE 2 X 2 CASE

A

c

cbad

c
y

c

dy

a

by
c

dy
w

a

by
w

















1

1



SIMPLE 2 X 2 CASE

A

a

bcad

a
z

c

dz

a

bz
c

dz
x

a

bz
x

















1

1



SIMPLE 2 X 2 CASE

So that for a 2 x 2 matrix the inverse can be constructed 
in a simple fashion as

































 ac

bd

A
A

a

A

c
A

b

A

d

1

•Exchange elements of main diagonal

•Change sign in elements off main diagonal

•Divide resulting matrix by the determinant











zy

xw
A 1



SIMPLE 2 X 2 CASE

Example 








































2.04.0

3.01.0

24

31

10

1

14

32

1A

A

Check inverse
A-1 A=I

I






























10

01

14

32

24

31

10

1



MATRICES AND LINEAR EQUATIONS

Linear Equations



LINEAR EQUATIONS
Linear equations are common and important for survey 
problems

Matrices can be used to express these linear equations and 
aid in the computation of unknown values

Example

n equations in n unknowns, the aij are numerical coefficients, 
the bi are constants and the xj are unknowns

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa















2211

22222121

11212111



LINEAR EQUATIONS

The equations may be expressed in the form

AX = B

where

,, 2

1

11

22221

11211









































nnnnn

n

n

x

x
x

X

aaa

aaa
aaa

A











and





















nb

b
b

B


2

1

n x n n x 1 n x 1

Number of unknowns = number of equations = n



LINEAR EQUATIONS

If the determinant is nonzero, the equation can be solved to produce 
n numerical values for x that satisfy all the simultaneous equations

To solve, premultiply both sides of the equation by A-1 which exists 
because |A| = 0

A-1 AX = A-1 B

Now since
A-1 A = I

We get
X = A-1 B

So if the inverse of the coefficient matrix is found, the unknowns, 
X would be determined



LINEAR EQUATIONS

Example

32

12

23

321

21

321







xxx

xx

xxx

The equations can be expressed as























































3

1

2

121

012

113

3

2

1

x

x

x



LINEAR EQUATIONS

When A-1 is computed the equation becomes

























































 

7

3

2

3

1

2

5.25.35.1

0.10.20.1

5.05.05.0
1BAX

Therefore 

7

,3

,2

3

2

1







x

x

x



LINEAR EQUATIONS

The values for the unknowns should be checked by substitution 
back into the initial equations

32

12

23

321

21

321







xxx

xx

xxx

3)7()3(2)2(

1)3()2(2

2)7()3()2(3







7

,3

,2

3

2

1







x

x

x



Eigenvalues and Eigenvectors

1  Eigen values and Eigenvectors

2  Diagonalization

3  Symmetric Matrices and Orthogonal Diagonalization 

4  Application of Eigenvalues and Eigenvectors

5  Principal Component Analysis

7.1



7.2

1 Eigenvalues and Eigenvectors
 Eigenvalue problem  (one of the most important problems in the 

linear algebra):

If A is an nn matrix, do there exist nonzero vectors x in Rn

such that Ax is a scalar multiple of x?

 Eigenvalue and Eigenvector :

A: an nn matrix
: a scalar (could be zero)
x: a nonzero vector in Rn

A x x

Eigenvalue

Eigenvector

※ Geometric Interpretation

(The term eigenvalue is from the German word Eigenwert, meaning 
“proper value”)

x

A x = x

x

y



7.3

 Ex 1:  Verifying eigenvalues and eigenvectors













10

02
A 1

1

0

 
  
 

x

1 1

2 0 1 2 1
2 2

0 1 0 0 0
A

       
          

       
x x

Eigenvalue

2 2

2 0 0 0 0
1 ( 1)

0 1 1 1 1
A

       
            

        
x x

Eigenvalue

Eigenvector

Eigenvector

2

0

1

 
  
 

x



7.4

 Thm. 1: The eigenspace corresponding to  of matrix A

If A is an nn matrix with an eigenvalue , then the set of all 

eigenvectors of  together with the zero vector is a subspace 

of Rn. This subspace is called the eigenspace of 
Proof:

x1 and x2 are eigenvectors corresponding to 

1 1 2 2(i.e.,  ,   )A A  x x x x

1 2 1 2 1 2 1 2

1 2

(1) ( ) ( )

     (i.e.,   is also an eigenvector corresponding to )

A A A

λ

        



x x x x x x x x

x x

1 1 1 1

1

(2) ( ) ( ) ( ) ( )

     (i.e.,   is also an eigenvector corresponding to )

A c c A c c

c

 



  x x x x

x

Since this set is closed under vector addition and scalar 
multiplication, this set is a subspace of Rn .



7.5

 Ex 3: Examples of eigenspaces on the xy-plane

For the matrix A as follows, the corresponding eigenvalues 
are 1 = –1 and 2 = 1:











10

01
A

Sol:

0 1 0 0 0 0
 1

0 1
A

y y y y

         
           

         

For the eigenvalue 1 = –1, corresponding vectors are any vectors on the x-axis

1 0
 1

0 0 1 0 0 0

x x x x
A

          
            

         

For the eigenvalue 2 = 1, corresponding vectors are any vectors on the y-axis

※ Thus, the eigenspace
corresponding to  = –1 is the x-
axis, which is a subspace of R2

※ Thus, the eigenspace
corresponding to  = 1 is the y-
axis, which is a subspace of R2



7.6

※ Geometrically speaking, multiplying a vector (x, y) in R2 by the matrix A
corresponds to a reflection to the y-axis, i.e., left multiplying A to v can 
transform v to another vector in the same vector space

0 0

0 0

0
1 1

0

x x x
A A A A A

y y y

x x

y y

          
              

          

     
        

     

v



7.7

(1) An eigenvalue of A is a scalar  such that                          

 Thm. 2: Finding eigenvalues and eigenvectors of a matrix AMnn

det( ) 0I A  

(2) The eigenvectors of A corresponding to  are the nonzero

solutions of                       

 Characteristic polynomial of AMnn:
1

1 1 0det( ) ( ) n n
nI A I A c c c    

       

 Characteristic equation of A:
det( ) 0I A  

( )I A  x 0

Let A be an nn matrix.

has nonzero solutions for x iff                          ( )I A  x 0 det( ) 0I A  

 Note: follwing the definition of the eigenvalue problem
(homogeneous system)    ( )A A I I A       x x x x x 0

(The above iff results comes from the equivalent conditions on Slide 4.101)



7.8

 Ex 4: Finding eigenvalues and eigenvectors















51

122
A

Sol: Characteristic equation:

2

2 12
det( )

1 5

3 2 ( 1)( 2) 0

I A





   


 

 

      

Eigenvalue: 2 ,1 21  

 2 ,1 



7.9

2(2) 2   
1

2
2

G.-J. E.

1

2

4 12 0
( )

1 3 0

4 12 1 3

1 3 0 0

3 3
,   0

1

x
I A

x

x s
s s

x s


     

       
    

    
    

   

     
        

    

x

1(1) 1   
1

1
2

G.-J. E.

1

2

3 12 0
( )

1 4 0

3 12 1 4

1 4 0 0

4 4
,   0

1

x
I A

x

x t
t t

x t


     

       
    

    
    

   

     
        

    

x
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















200
020
012

A

Sol: Characteristic equation:

3

2 1 0

0 2 0 ( 2) 0

0 0 2

I A



  



 

     



Eigenvalue: 2

 Ex 5: Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding eigenvectors for 

the matrix A. What is the dimension of the eigenspace of 

each eigenvalue?
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The eigenspace of λ = 2:

1

2

3

0 1 0 0

( ) 0 0 0 0

0 0 0 0

x

I A x

x



     
     

  
     
          

x

0,  ,
1
0
0

0
0
1

0

3

2

1





























































tsts
t

s

x
x
x

1 0

0 0 , : the eigenspace of   corresponding to 2

0 1

s t s t R A 

    
    

      
        

Thus, the dimension of its eigenspace is 2
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 Notes:

(1)  If an eigenvalue 1 occurs as a multiple root (k times) for 

the characteristic polynominal, then 1 has multiplicity k

(2)  The multiplicity of an eigenvalue is greater than or equal 

to the dimension of its eigenspace. (In Ex. 5, k is 3 and 

the dimension of its eigenspace is 2)
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 Ex 6：Find the eigenvalues of the matrix A and find a basis 

for each of the corresponding eigenspaces






















3001
0201
10510
0001

A

Sol: Characteristic equation:

2

1 0 0 0

0 1 5 10

1 0 2 0

1 0 0 3

( 1) ( 2)( 3) 0

I A










  



 
 

 

 

    

Eigenvalues: 3 ,2 ,1 321  
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1(1) 1  

1

2
1

3

4

0 0 0 0 0

0 0 5 10 0
( )

1 0 1 0 0

1 0 0 2 0

x

x
I A

x

x



    
    


       
     
    

     

x

1

G.-J.E.
2

3

4

2 0 2

1 0
,   , 0

2 0 2

0 1

x t

x s
s t s t

x t

x t

        
       
           
       
       

      

 

1

2

0

2

,

0

0

1

0





























































 is a basis for the eigenspace 
corresponding to 1 1  

※The dimension of the eigenspace of λ1 = 1 is 2
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2(2) 2 

1

2
2

3

4

1 0 0 0 0

0 1 5 10 0
( )

1 0 0 0 0

1 0 0 1 0

x

x
I A

x

x



    
    


       
    
    

     

x

1

G.-J.E.
2

3

4

0 0

5 5
,   0

1

0 0

x

x t
t t

x t

x

     
     
        
     
     

    

 

0

1

5

0











































 is a basis for the eigenspace 
corresponding to 2 2  

※The dimension of the eigenspace of λ2 = 2 is 1
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3(3) 3 

1

2
3

3

4

2 0 0 0 0

0 2 5 10 0
( )

1 0 1 0 0

1 0 0 0 0

x

x
I A

x

x



    
    


       
    
    

    

x

1

G.-J.E.
2

3

4

0 0

5 5
,   0

0 0

1

x

x t
t t

x

x t

     
     

 
        
     
     

    

 

1

0

5

0












































 is a basis for the eigenspace 

corresponding to 3 3  

※The dimension of the eigenspace of λ3 = 3 is 1
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 Thm. 3: Eigenvalues for triangular matrices
If A is an nn triangular matrix, then its eigenvalues are 
the entries on its main diagonal

 Ex 7: Finding eigenvalues for triangular and diagonal matrices

2 0 0

(a) 1 1 0

5 3 3

A

 
 

 
 
  

1 0 0 0 0

0 2 0 0 0

(b) 0 0 0 0 0

0 0 0 4 0

0 0 0 0 3

A

 
 
 
 
 

 
  

Sol:
2 0 0

(a) 1 1 0 ( 2)( 1)( 3) 0

5 3 3

I A



    





       

  

1 2 32,  1,  3      

1 2 3 4 5(b) 1,  2,  0,  4,  3           
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 Ex 8: Finding eigenvalues and eigenvectors for standard matrices
Find the eigenvalues and corresponding eigenvectors for

1 3 0

                     3 1 0

0 0 2

A

 
 


 
  

Sol:

























200

013

031







 AI 2( 2) ( 4) 0    

1 2eigenvalues 4,  2    

1

2

For 4,  the corresponding eigenvector is (1,  1,  0).

For 2, the corresponding eigenvectors are (1,  1,  0)

                     and (0,  0,  1).







  

※ A is the standard matrix for T(x1, x2, 
x3) = (x1 + 3x2, 3x1 + x2, –2x3) (see 
Slides 7.19 and 7.20)
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 Transformation matrix     for nonstandard bases

Suppose  is the standard basis of . Since the coordinate matrix of a vector 

relative to the standard basis consists of the components of that vector, i.e., 

for any  in ,  = [ ] .

n

n
B

B R

Rx x x

         1 2( ) ( ) ,  where ( )  ( ) ( )

is the standard matrix for  or the matrix of  relative to the standard 

basis 

nB B B B B
T A T A A T T T

T T

B

      x x x x e e e

1 2

The above theorem can be extended to consider a nonstandard basis ', which

consists of { , , , }n

B

v v v

         1 2' ' ' ' '
( ) ' ,  where ' ( )  ( ) ( )

is the transformation matrix for  relative to the basis '

nB B B B B
T A A T T T

T B

    x x v v v

'A



7.20

2 Diagonalization

 Diagonalization problem :

For a square matrix A, does there exist an invertible matrix P 
such that P–1AP is diagonal?

 Diagonalizable matrix :

Definition 1: A square matrix A is called diagonalizable if 
there exists an invertible matrix P such that P–1AP is a 
diagonal matrix (i.e., P diagonalizes A)

Definition 2: A square matrix A is called diagonalizable if A
is similar to a diagonal matrix

 Notes:

This section shows that the eigenvalue and eigenvector problem 
is closely related to the diagonalization problem

※ In Sec. 6.4, two square matrices A and B are similar if there exists an invertible 
matrix P such that B = P–1AP.
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 Thm. 4: Similar matrices have the same eigenvalues

If A and B are similar nn matrices, then they have the 

same eigenvalues
Pf:

APPBBA 1similar are  and 

1 1 1 1

1 1 1

( )I B I P AP P IP P AP P I A P

P I A P P P I A P P I A

I A

   

  



   

  

      

     

 

Since A and B have the same characteristic equation, 
they are with the same eigenvalues

For any diagonal matrix in the 
form of D = λI, P–1DP = D

Consider the characteristic equation of B:

※ Note that the eigenvectors of A and B are not necessarily identical



7.22

 Ex 1: Eigenvalue problems and diagonalization programs



















200
013
031

A

Sol:  Characteristic equation:

2

1 3 0

3 1 0 ( 4)( 2) 0

0 0 2

I A



   



 

       



1 2 3The eigenvalues : 4,  2,  2      

(1) 4  the eigenvector   1

1

1

0

 
 


 
  

p
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(2) 2  the eigenvector     2 3

1 0

1 ,   0

0 1

   
   

  
   
      

p p

1
1 2 3

1 1 0 4 0 0

[ ] 1 1 0 ,  and 0 2 0

0 0 1 0 0 2

P P AP

   
   

    
   
      

p p p

2 1 3

1

[ ]

1 1 0 2 0 0

1 1 0          0 4 0

0 0 1 0 0 2

P

P AP



   
   

   
   
      

p p p Note: If
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 Thm. 5: Condition for diagonalization

An nn matrix A is diagonalizable if and only if it has n 
linearly independent eigenvectors

※ If there are n linearly independent eigenvectors, it does not imply that there are n distinct 
eigenvalues. In an extreme case, it is possible to have only one eigenvalue with the 
multiplicity n, and there are n linearly independent eigenvectors for this eigenvalue

※ On the other hand, if there are n distinct eigenvalues, then there are n linearly 
independent eigenvectors, and thus A must be diagonalizable
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 Ex 4: A matrix that is not diagonalizable

Show that the following matrix is not diagonalizable

1 2
                          

0 1
A

 
  
 

Sol: Characteristic equation:

21 2
( 1) 0

0 1
I A


 



 
    



1 1The eigenvalue 1,  and then solve ( )  for eigenvectorsI A   x 0

1 1

0 2 1
eigenvector 

0 0 0
I A I A

   
        

   
p

Since A does not have two linearly independent eigenvectors, 

A is not diagonalizable
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 Steps for diagonalizing an nn square matrix:

Step 2: Let 1 2[   ]nP  p  p p

Step 1: Find n linearly independent eigenvectors                    

for A with corresponding eigenvalues 
1 2, , np p p

Step 3:





















n

DAPP













00

00
00

2

1

1

where ,   1,  2, ,  i i iA i n p p 

1 2, , , n  
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 Ex 5: Diagonalizing a matrix

diagonal. is such that  matrix  a Find      

113

131

111

         

1APPP

A

























Sol:  Characteristic equation:

1 1 1

1 3 1 ( 2)( 2)( 3) 0

3 1 1

I A



    





         

 

1 2 3The eigenvalues :  2,  2,  3     
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 21 

1
G.-J. E.

1 2

3

1 1 1 1 0 1 0

1 1 1 0 1 0 0

3 1 3 0 0 0 0

x

I A x

x



       
       

       
       
              

1

2 1

3

1

0     eigenvector 0

1

x t

x

x t

      
     

  
     
          

p

 22 

1
14

G.-J. E. 1
2 24

3

3 1 1 1 0 0

1 5 1 0 1 0

3 1 1 0 0 0 0

x

I A x

x



       
      

       
      
             

1
1 4

1
2 24

3

1

    eigenvector 1

4

x t

x t

x t

    
    

    
    
        

p
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 33 

1
G.-J. E.

3 2

3

2 1 1 1 0 1 0

1 0 1 0 1 1 0

3 1 4 0 0 0 0

x

I A x

x



       
       

       
       
              

1

2 3

3

1

    eigenvector 1

1

x t

x t

x t

      
     

  
     
          

p

1 2 3

1

1 1 1

[ ] 0 1 1  and it follows that

1 4 1

2 0 0

0 2 0

0 0 3

P

P AP

  
 

  
 
  

 
 

 
 
  

p p p
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 Note: a quick way to calculate Ak based on the diagonalization 
technique

1 1

2 2

0 0 0 0

0 0 0 0
(1)   

0 0 0 0

k

k
k

k
n n

D D

 

 

 

  
  
    
  
  
    

 

 

       

 

1 1 1 1 1

repeat  times

1

1 2

(2)   

0 0

0 0
     ,  where 

0 0

k k

k

k

k
k k k

k
n

D P AP D P AP P AP P AP P A P

A PD P D







    



   

 
 
  
 
 
  

  





   


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 Thm. 6: Sufficient conditions for diagonalization
If an nn matrix A has n distinct eigenvalues, then the 
corresponding eigenvectors are linearly independent and 
thus A is diagonalizable.
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 Ex 7: Determining whether a matrix is diagonalizable























300

100

121

A

Sol: Because A is a triangular matrix, its eigenvalues are

1 2 31,  0,  3     

According to Thm. 6, because these three values are 
distinct, A is diagonalizable
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 Ex 8: Finding a diagonalized matrix for a linear transformation
3 3

1 2 3 1 2 3 1 2 3 1 2 3

3

Let :  be the linear transformation given by

      ( ) ( 3 3 )

Find a basis '  for  such that the matrix for  relative 

to '  is diagonal

T R R

T x ,x ,x x x x , x x x , x x x

B R T

B



       

Sol:
The standard matrix for T is given by

1 1 1

1 3 1

3 1 1

A

  
 


 
   

From  Ex. 5 you know that λ1 = 2, λ2 = –2, λ3 = 3 and thus A is 
diagonalizable. 
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1 2 3' { , , } {( 1,  0,  1),(1,  1,  4),( 1,  1,  1)}B     v v v

 1 ' 2 ' 3 '' [ ( )]   [ ( )]   [ ( )]

2 0 0

0 2 0

0 0 3

B B BA T T T

 
 

 
 
  

v v v

The matrix for T relative to this basis is
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3 Symmetric Matrices and Orthogonal Diagonalization

 Symmetric matrix :

A square matrix A is symmetric if it is equal to its transpose:

TAA  

 Ex 1: Symmetric matrices and nonsymetric matrices





















502
031
210

A











13
34

B

















501
041
123

C

(symmetric)

(symmetric)

(nonsymmetric)
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 Thm 7: Eigenvalues of symmetric matrices

If A is an nn “symmetric” matrix, then the following 
properties are true

(1) A is diagonalizable (symmetric matrices (except the 
matrices in the form of A = aI, in which case A is already 
diagonal) are guaranteed to have n linearly independent 
eigenvectors and thus be diagonalizable)

(2) All eigenvalues of A are real numbers

(3) If  is an eigenvalue of A with the multiplicity to be k, then
 has k linearly independent eigenvectors. That is, the 
eigenspace of  has dimension k

※ The above theorem is called the Real Spectral Theorem, and the set of 
eigenvalues of A is called the spectrum of A
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 Ex 2:
Prove that a 2 × 2 symmetric matrix is diagonalizable











bc
ca

A

Pf: Characteristic equation:

0)( 22 



 cabba

bc
ca

AI 





2 2 2 2 2

2 2 2

2 2

( ) 4(1)( ) 2 4 4

2 4

( ) 4

a b ab c a ab b ab c

a ab b c

a b c

       

   

   0 real-number solutions 

As a function in , this quadratic polynomial function has a 
nonnegative discriminant as follows
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04)(  (1) 22  cba

0  ,   cba

0
  itself is a diagonal matrix

0

a c a
A

c b a

   
    
   

04)(  )2( 22  cba

The characteristic polynomial of A has two distinct real roots, 

which implies that A has two distinct real eigenvalues. 

According to Thm. 6, A is diagonalizable

※ Note that in this case, A has one eigenvalue, a, whose multiplicity is 2, 
and the two eigenvectors are linearly independent
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A square matrix P is called orthogonal if it is invertible and
 Orthogonal matrix :

1 (or )T T TP P PP P P I   

 Thm. 8: Properties of orthogonal matrices
An nn matrix P is orthogonal if and only if its column vectors 
form an orthonormal set

1 1 1 2 11 1 1 2 1

2 1 2 2 2 12 1 2 2 2 1

1 21 2

T T T
nn

T T T
T

n

T T T
n n n nn n n n

P P I

     
   

       
   
   

      

p p p p p pp p p p p p
p p p p p pp p p p p p

p p p p p pp p p p p p





      



Pf: Suppose the column vectors of P form an orthonormal set, i.e.,

 1 2   ,  where 0 for  and 1n i j i iP i j     p   p p p p p p

It implies that P–1 = PT and thus P is orthogonal
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 Ex 5: Show that P is an orthogonal matrix.























53
5

53
4

53
2

5
1

5
2

3
2

3
2

3
1

0P

Sol: If P is a orthogonal matrix, then 1   T TP P PP I   

1 2 21 2 2
3 5 3 53 3 3

2 1 2 1 4
35 5 5 3 5

5 52 4 2
33 5 3 5 3 5 3 5

1 0 0

0 0 1 0

0 0 10

TPP I

 

 

 

     
     

       
            
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1 2 1 3 2 3 1 1

2 2 3 3

we can produce 0 and 

1

       

   

p p p p p p p p

p p p p

1 2 3So, { ,  ,  } is an orthonormal set.p p p

1 2 2
3 3 3

2 1
1 2 35 5

52 4
3 53 5 3 5

Moreover, let ,  ,  and 0 ,

 

     
     

       
     

       

p p p
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 Thm. 9: Properties of symmetric matrices

Let A be an nn “symmetric” matrix. If 1 and 2 are distinct 
eigenvalues of A, then their corresponding eigenvectors x1 and x2  

are orthogonal. 

1 1 2 1 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( )T T TA A A       x x x x x x x x x x
because  is symmetric

1 2 1 2 1 2 2 2 2 2 2( ) ( ) ( ) ( ) )
A

T T TA A         1 1x x x x x x x x (x x

1 2 1 2

1 2 1 2 1 2

The above equation implies ( )( ) 0,  and because 

,  it follows that 0. So,  and  are orthogonal

 

 

  

  

x x

x x x x

Pf:

※ For distinct eigenvalues of a symmetric matrix, their corresponding 
eigenvectors are orthogonal and thus linearly independent to each other 

※ Note that there may be multiple x1’s and x2’s corresponding to 1 and 2
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 Thm. 10: Fundamental theorem of symmetric matrices
An nn matrix A is orthogonally diagonalizable and has real 
eigenvalues if and only if A is symmetric 

A matrix A is orthogonally diagonalizable if there exists an 
orthogonal matrix P such that P–1AP = D is diagonal 

 Orthogonal diagonalization :

( )

1 1

1

 is orthogonally diagonalizable

 is diagonal, and  is an orthogonal matrix s.t. 

( ) ( )

T

T T T T T T T T T

A

D P AP P P P

A PDP PDP A PDP P D P PDP A

 



  

       

Pf:
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 Orthogonal diagonalization of a symmetric matrix:
Let A be an nn symmetric matrix.
(1) Find all eigenvalues of A and determine the multiplicity of each 

(2) For each eigenvalue of multiplicity 1, choose the unit eigenvector 
(3) For each eigenvalue of the multiplicity to be k  2, find a set of k

linearly independent eigenvectors. If this set {v1, v2, …, vk} is not 
orthonormal, apply the Gram-Schmidt orthonormalization process 

1 1 2 2

1 1 2 2

1 1 2 2

It is known that G.-S. process is a kind of linear transformation, i.e., the 

produced vectors can be expressed as  (see Slide 5.55), 

i. Since , , , ,

(

k k

k k

c c c

A A A

A c c c

  

  

  

   

v v v

v v v v v v

v v





 1 1 2 2

1 2

) ( )

The produced vectors through the G.-S. process are still eigenvectors for 

ii. Since , , ,  are orthogonal to eigenvectors corresponding to other

different eigenvalues (acc

k k k k

k

c c c



   



v v v v

v v v





1 1 2 2ording to Thm. 7.9),  is also

orthogonal to eigenvectors corresponding to other different eigenvalues.
k kc c c  v v v

※According to Thm. 9, eigenvectors corresponding to distinct eigenvalues are 
orthognoal
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(4) The composite of steps (2) and (3) produces an orthonormal set of 
n eigenvectors. Use these orthonormal and thus linearly 
independent eigenvectors as column vectors to form the matrix P.

i. According to Thm. 8, the matrix P is orthogonal

ii. Following the diagonalization process , D = P–1AP is diagonal 

Therefore, the matrix A is orthogonally diagonalizable 
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 Ex 7: Determining whether a matrix is orthogonally diagonalizable

















111
101
111

1A



















081
812
125

2A











102
023

3A













20
00

4A

Orthogonally 
diagonalizable

Symmetric
matrix
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 Ex 9: Orthogonal diagonalization

Find an orthogonal matrix  that diagonalizes .

2 2 2

                        2 1 4

2 4 1

P A

A

 
 

 
 
   

Sol:
0)6()3(  )1( 2   AI

1 26,  3 (has a multiplicity of 2)   

1 1 2 2
1 1 1 3 3 3

1

(2)  6,  (1,  2,  2)    ( ,  ,  )       
v

v u
v

2 2 3(3)  3,  (2,  1,  0),  ( 2,  4,  5)    v v

orthogonal



1



2



3



4



5



6



7



8



9



10



11



12



13



14



15



16



17



18



19



20



21



22



23



24



25



26



27



28



29



30



31



32



33



34



IMPORTANT TERMS, DEFINITIONS & 
RESULTS                          

1



2



3



4



5

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPbz97fyyscCFYNPjgod8z8BnQ&url=http://www.math.union.edu/~niefiels/old/09IMP112/Quadric/QuadricSurfaces.html&ei=VN3fVfb5K4OfuQTz_4ToCQ&psig=AFQjCNEbPukVrK9lT26tD6oa4V1k8Xr8NA&ust=1440820911082287


6

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCIiXoaLzyscCFVMbjgod5_oHEw&url=http://wwwf.imperial.ac.uk/metric/metric_public/glossary/glossary.html&ei=M97fVcixKtO2uATn9Z-YAQ&psig=AFQjCNFIlnG9-hg_J9bEucSXxqGuniavBg&ust=1440821155907969


8



9



10



11



12



22



23



24



25



26



27



28



29



30



31



32



33



IMPORTANT TERMS, DEFINITIONS & RESULTS

34



35



36



37



38



39



40



41



42



43



44



45



46



47



48



49



IMPROPER INTEGRALS



TECHNIQUES OF INTEGRATION

In defining a definite integral                 , 

we dealt with a function f defined on a finite 

interval [a, b] and we assumed that f does 

not have an infinite discontinuity 

( )
b

a
f x dx



Improper Integrals

In this section, we will learn:

How to solve definite integrals 

where the interval is infinite and 

where the function has an infinite discontinuity. 



IMPROPER INTEGRALS

In this section, we extend the concept 

of a definite integral to the cases where:

 The interval is infinite

 f has an infinite discontinuity in [a, b]



IMPROPER INTEGRALS

In either case, the integral is called 

an improper integral. 

 One of the most important applications of this idea, 
probability distributions, will be studied in Section 8.5 



TYPE 1—INFINITE INTERVALS

Consider the infinite region S that lies:

 Under the curve y = 1/x2

 Above the x-axis

 To the right of the line x = 1



INFINITE INTERVALS

You might think that, since S is infinite 

in extent, its area must be infinite.

 However, let’s take a closer look.



INFINITE INTERVALS

The area of the part of S that lies to the left 

of the line x = t (shaded) is:

 Notice that 
A(t) < 1 no 
matter how 
large t is 
chosen.

21
1

1 1 1
( ) 1

t
t

A t dx
x x t


    






INFINITE INTERVALS

We also observe that:

1
lim ( ) lim 1 1
t t

A t
t 

 
   

 



INFINITE INTERVALS

The area of the shaded region approaches 

1 as t → ∞.



INFINITE INTERVALS

So, we say that the area of the infinite 

region S is equal to 1 and we write:

2 21 1

1 1
lim 1

t

t
dx dx

x x




  



INFINITE INTERVALS

Using this example as a guide, we define 

the integral of f (not necessarily a positive 

function) over an infinite interval as the limit 

of integrals over finite intervals.



IMPROPER INTEGRAL OF TYPE 1

If  exists for every number t ≥ a, 

then

provided this limit exists (as a finite number).

( )
t

a
f x dx

( ) lim ( )
t

a at
f x dx f x dx




 

Definition 1 a



IMPROPER INTEGRAL OF TYPE 1

If exists for every number t ≤ a, 

then

provided this limit exists (as a finite number).

Definition 1 b

( )
b

t
f x dx

( ) lim ( )
b b

tt
f x dx f x dx

 
 



CONVERGENT AND DIVERGENT

The improper integrals                  and    

are called:

 Convergent if the corresponding limit exists.

 Divergent if the limit does not exist.

( )
a

f x dx



( )

b
f x dx



Definition 1 b



IMPROPER INTEGRAL OF TYPE 1

If both                   and                    are 

convergent, then we define:

 Here, any real number a can be used.

( )
a

f x dx


 ( )
a

f x dx


( ) ( ) ( )
a

a
f x dx f x dx f x dx

 

 
   

Definition 1 c



IMPROPER INTEGRALS OF TYPE 1

Any of the improper integrals 

in Definition 1 can be interpreted 

as an area provided f is a positive 

function.



IMPROPER INTEGRALS OF TYPE 1

For instance, in case (a), suppose f(x) ≥ 0 

and the integral                  is convergent.

 Then, we define the area of the region 
S = {(x, y) | x ≥ a, 0 ≤ y ≤ f(x)} in the figure as: 

( )
a

f x dx




( ) ( )
a

A S f x dx


 



IMPROPER INTEGRALS OF TYPE 1

This is appropriate because               

is the limit as t → ∞ of the area under 

the graph of f from a to t. 

( )
a

f x dx






IMPROPER INTEGRALS OF TYPE 1

Determine whether the integral 

is convergent or divergent.

Example 1

1
(1/ )x dx







IMPROPER INTEGRALS OF TYPE 1

According to Definition 1 a, 

we have:

 The limit does not exist as a finite number.
 So, the integral is divergent.

Example 1

1 1 1

1 1
lim limln

lim(ln ln1)

limln

tt

t t

t

t

dx dx x
x x

t

t



 





 


 

  

 



IMPROPER INTEGRALS OF TYPE 1

Let’s compare the result of Example 1 with 

the example at the beginning of the section:

 Geometrically, this means the following. 

21 1

1 1
converges divergesdx dx

x x

 

 



IMPROPER INTEGRALS OF TYPE 1

The curves y = 1/x2 and y = 1/x look very 

similar for x > 0.

However, the region under y = 1/x2 to the right 

of x = 1 has finite area, but the corresponding 

region under y = 1/x has infinite area.



Note that both 1/x2 and 1/x approach 0 as 

x → ∞, but 1/x2 approaches faster than 1/x.

 The values of 1/x don’t decrease fast enough 

for its integral to have a finite value. 

IMPROPER INTEGRALS OF TYPE 1



IMPROPER INTEGRALS OF TYPE 1

Evaluate

 Using Definition 1 b, 
we have:

0 xxe dx


0 0
limx x

tt
xe dx xe dx

 
 

Example 2



IMPROPER INTEGRALS OF TYPE 1

We integrate by parts with u = x, 
dv = ex dx so that du = dx, v = ex:

0 00

1

x x x

tt t

t t

xe dx xe e dx

te e

 

   

 

Example 2



IMPROPER INTEGRALS OF TYPE 1

We know that et → 0 as t → -∞, 
and, by l’Hospital’s Rule, 

we have:
lim lim

1
lim

lim ( )

0

t
tt t

tt

t

t

t
te

e

e

e

 
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

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
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IMPROPER INTEGRALS OF TYPE 1

Therefore,

0
lim ( 1 )

0 1 0

1

x t t

t
xe dx te e

 
   

   
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IMPROPER INTEGRALS OF TYPE 1

Evaluate

 It’s convenient to choose a = 0 in Definition 1 c:

2

1

1
dx

x



 

0

2 2 20

1 1 1

1 1 1
dx dx dx

x x x

 

 
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Example 3



IMPROPER INTEGRALS OF TYPE 1

We must now evaluate the integrals 

on the right side separately—as 

follows.

Example 3



IMPROPER INTEGRALS OF TYPE 1

20
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1

0

1 1

1
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lim(tan tan 0)
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2

t

t

t

t

t

t

dx
x

dx
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Example 3
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IMPROPER INTEGRALS OF TYPE 1

Since both these integrals are convergent, 

the given integral is convergent and

2

1

1 2 2
dx

x

 





  


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IMPROPER INTEGRALS OF TYPE 1

As 1/(1 + x2) > 0, the given improper integral 

can be interpreted as the area of the infinite 

region that lies under the curve y = 1/(1 + x2) 

and above the x–axis.

Example 3



IMPROPER INTEGRALS OF TYPE 1

For what values of p is the integral

convergent?

 We know from Example 1 that, if p = 1, 
the integral is divergent.

 So, let’s assume that p ≠ 1.

1

1
p

dx
x




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IMPROPER INTEGRALS OF TYPE 1

Then,

1 1

1

1

1

1
lim

lim
1

1 1
lim 1

1

t p
p t

x tp

t
x
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dx x dx
x
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IMPROPER INTEGRALS OF TYPE 1

If p > 1, then p – 1 > 0.

So, as t → ∞, t p-1
→ ∞ and 1/t p-1 → 0.

 Therefore,

 So, the integral converges.

1

1 1
if 1

1p
dx p

x p


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IMPROPER INTEGRALS OF TYPE 1

However, if p <1, then p – 1 < 0.

So,

 Thus, the integral diverges.

1
1

1
asp

p
t t

t



  
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IMPROPER INTEGRALS OF TYPE 1

We summarize the result of Example 4 

for future reference:

is:

 Convergent if p > 1

 Divergent if p ≤ 1

Definition 2

1

1
p

dx
x







TYPE 2—DISCONTINUOUS INTEGRANDS

Suppose f is a positive continuous 

function defined on a finite interval [a, b) 

but has a vertical asymptote at b.



DISCONTINUOUS INTEGRANDS

Let S be the unbounded region under 

the graph of f and above the x-axis 

between a and b.

 For Type 1 integrals, the regions extended 
indefinitely in a horizontal direction.

 Here, the region is infinite in a vertical direction.



DISCONTINUOUS INTEGRANDS

The area of the part of S between a and t 

(shaded region) is:
( ) ( )

t

a
A t f x dx 



DISCONTINUOUS INTEGRANDS

If it happens that A(t) approaches a definite 

number A as t → b-, then we say that the area 

of the region S is A and we write:

( ) lim ( )
b t

a at b
f x dx f x dx


 



DISCONTINUOUS INTEGRANDS

We use the equation to define an improper 

integral of Type 2 even when f is not a positive 

function—no matter what type of discontinuity 

f has at b.



IMPROPER INTEGRAL OF TYPE 2

If f is continuous on [a, b) and is discontinuous 

at b, then 

if this limit exists (as a finite number).

( ) lim ( )
b t

a at b
f x dx f x dx


 

Definition 3 a



IMPROPER INTEGRAL OF TYPE 2

If f is continuous on (a, b] and is discontinuous 

at a, then

if this limit exists (as a finite number).

( ) lim ( )
b b

a tt a
f x dx f x dx


 

Definition 3 b



IMPROPER INTEGRAL OF TYPE 2

Definition 3 b is illustrated for the case 

where f(x) ≥ 0 and has vertical asymptotes 

at a and c, respectively.

Definition 3 b



IMPROPER INTEGRAL OF TYPE 2

The improper integral                 

is called:

 Convergent if the corresponding limit exists. 

 Divergent if the limit does not exist.

( )
b

a
f x dx

Definition 3 b



IMPROPER INTEGRAL OF TYPE 2

If f has a discontinuity at c, where a < c < b, 

and both                  and                  are 

convergent, then we define:

( )
c

a
f x dx ( )

b

c
f x dx

( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx   

Definition 3 c



IMPROPER INTEGRAL OF TYPE 2

Definition 3 c is illustrated for the case 

where f(x) ≥ 0 and has vertical asymptotes 

at a and c, respectively.

Definition 3 c



IMPROPER INTEGRALS OF TYPE 2

Find 

 First, we note that the given integral is improper 
because has the vertical asymptote 
x = 2.

5

2

1

2
dx

x 

( ) 1/ 2f x x 

Example 5



IMPROPER INTEGRALS OF TYPE 2

 The infinite discontinuity occurs at the left end-point 
of [2, 5].

 So, we use Definition 3 b:

 Thus, the given improper integral is convergent.

5 5

2 2

5

2

2

lim
2 2

lim 2 2

lim 2( 3 2)

2 3
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t
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IMPROPER INTEGRALS OF TYPE 2

 Since the integrand is positive, 
we can interpret the value of the integral 
as the area of the shaded region here. 

Example 5



IMPROPER INTEGRALS OF TYPE 2

Determine whether                   

converges or diverges.

 Note that the given integral is improper 
because:

2

0
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

 x dx

( / 2)
lim sec

x
x

 
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Example 6



IMPROPER INTEGRALS OF TYPE 2

 Using Definition 2 a, we have:

 This is because sec t → ∞ and tan t → ∞ as t → (π/2)-.

 Thus, the given improper integral is divergent.

 

/ 2

0 0( / 2)

( / 2) 0

( / 2)

sec lim sec

lim ln sec tan

lim ln(sec tan ) ln1

t
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x dx x dx
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IMPROPER INTEGRALS OF TYPE 2

Evaluate              if possible.

 Observe that the line x = 1 is a vertical asymptote 
of the integrand. 

3

0 1

dx

x 

Example 7



IMPROPER INTEGRALS OF TYPE 2

 As it occurs in the middle of the interval [0, 3], 
we must use Definition 3 c with c = 1:

where

 This is because 1 – t → 0+ as t → 1-.

1

0 01 1 0

1

1

lim lim 1
1 1

lim(ln 1 ln 1)

limln(1 )

tt

t t

t

t

dx dx
x

x x
t
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IMPROPER INTEGRALS OF TYPE 2

Thus, is divergent. 

This implies that                    is divergent.

 We do not need to evaluate 

1

0
/( 1)dx x 

3

0
/( 1)dx x 

3

1
/( 1).dx x 
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WARNING

Then, we might have made the following 

erroneous calculation:

 This is wrong because the integral is improper 
and must be calculated in terms of limits.

3
3

0 0

ln 1
1

ln 2 ln1

ln 2

dx
x

x
  

 







WARNING

From now, whenever you meet the symbol 

, you must decide, by looking at 

the function f on [a, b], whether it is either:

 An ordinary definite integral

 An improper integral

( )
b

a
f x dx



IMPROPER INTEGRALS OF TYPE 2

Evaluate

 We know that the function f(x) = ln x has 
a vertical asymptote at 0 since                      .

 Thus, the given integral is improper, 
and we have:

1

0
ln x dx

0
lim ln
x

x


 

1 1

0 0
ln lim ln

tt
x dx x dx
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IMPROPER INTEGRALS OF TYPE 2

 Now, we integrate by parts with u = ln x, 
dv = dx, du = dx/x, and v = x:


1 11
ln ln

1ln1 ln (1 )

ln 1

tt t
x dx x x dx

t t t

t t t
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IMPROPER INTEGRALS OF TYPE 2

 To find the limit of the first term, 
we use l’Hospital’s Rule:

0 0

20

0
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lim ln lim
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IMPROPER INTEGRALS OF TYPE 2

Therefore,

1

0 0
ln lim( ln 1 )

0 1 0

1

t
x dx t t t
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   
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IMPROPER INTEGRALS OF TYPE 2

The geometric interpretation 

of the result is shown.

 The area of the shaded 
region above y = ln x
and below the x-axis is 1.

Example 8



A COMPARISON TEST FOR IMPROPER INTEGRALS

Sometimes, it is impossible to find the exact 

value of an improper integral and yet it is 

important to know whether it is convergent 

or divergent.

 In such cases, the following theorem is useful. 

 Although we state it for Type 1 integrals, 
a similar theorem is true for Type 2 integrals.



COMPARISON THEOREM

Suppose f and g are continuous functions 

with f(x) ≥ g(x) ≥ 0 for x ≥ a.

a. If                   is convergent, then 
is convergent.

b. If                  is divergent, then 
is divergent.

( )
a

f x dx


 ( )
a

g x dx




( )
a

g x dx


 ( )
a

f x dx






COMPARISON THEOREM

We omit the proof of the theorem.

However, the figure makes it seem 

plausible. 



COMPARISON THEOREM

If the area under the top curve y = f(x) 

is finite, so is the area under the bottom 

curve y = g(x).



COMPARISON THEOREM

If the area under y = g(x) is infinite, 

so is the area under y = f(x).



COMPARISON THEOREM

Note that the reverse is not necessarily 

true: 

 If                  is convergent,                   may 
or may not be convergent. 

 If                   is divergent,                   may 
or may not be divergent. 

( )
a

g x dx


 ( )
a

f x dx




( )
a

f x dx


 ( )
a

g x dx






COMPARISON THEOREM

Show that                is convergent.

 We can’t evaluate the integral directly.

 The antiderivative of e-x2 is not an elementary function 
(as explained in Section 7.5).

2
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COMPARISON THEOREM

We write:

 We observe that the first integral on the right-hand side 
is just an ordinary definite integral.

2 2 21

0 0 1

x x xe dx e dx e dx
 

     

Example 9



COMPARISON THEOREM

 In the second integral, we use the fact that, 
for x ≥ 1, we have x2 ≥ x.

 So, –x2 ≤ -x and, therefore, e-x2  
≤ e-x.

Example 9



COMPARISON THEOREM

The integral of e-x is easy to evaluate:

1 1

1

1

lim

lim( )

tx x

t

t

t

e dx e dx

e e

e


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COMPARISON THEOREM

Thus, taking f(x) = e-x and g(x) = e-x2

in the theorem, we see that 

is convergent. 

 It follows that                  is convergent.

2

1

xe dx






2
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xe dx
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COMPARISON THEOREM

In Example 9, we showed that 

is convergent without computing its value.

 In Exercise 70, we indicate how to show 
that its value is approximately 0.8862

 In probability theory, it is important to know 
the exact value of this improper integral.

 Using the methods of multivariable calculus, 
it can be shown that the exact value is

2

0

xe dx






/ 2.



COMPARISON THEOREM

The table illustrates the definition of 

an improper integral by showing how 

the (computer- generated) values of              

approach           as t becomes large.

 In fact, these values 
converge quite quickly 
because e-x2

→ 0 very 
rapidly as x → ∞. 

/ 2

2

0

t xe dx
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COMPARISON THEOREM

The integral                       is divergent by 

the Comparison Theorem since

is divergent by Example 1 or 

by Definition 2 with p = 1.

1

1 xe
dx

x


 
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1 1xe

x x
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