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MATRICES - INTRODUCTION
Matrix algebra has at |east two advantages.

*Reduces complicated systems of eguations to simple expressions

«Adaptable to systematic method of mathematical treatment and
well suited to computers

Definition:
A matrix isaset or group of numbersarranged in a square or
rectangular array enclosed by two brackets

4 2 a b

1 -1 -3 0 c d




MATRICES - INTRODUCTION

Properties:

A specified number of rows and a specified number of

columns

*Two numbers (rows x columns) describe the dimensions
or size of the matrix.

Examples:
3X3 matrix
2x4 matrix
1x2 matrix

1 1 3 -3

0032

b -1




MATRICES - INTRODUCTION

A matrix is denoted by a bold capital |etter and the elements
within the matrix are denoted by lower case |etters

e.g. matrix [A] with elements g;

oA a3 a,
B By B By

o I Y I T ™

Wherei goesfrom 1tomand | goesfrom1ton



MATRICES - INTRODUCTION
TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of
columnsisaways 1

1] a4 _all_
A 1 Ay
2 It ‘

- _an]l—




MATRICES - INTRODUCTION
TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

11 6] [0 35 2

la, @, a, ay]



MATRICES - INTRODUCTION
TYPES OF MATRICES

Contains more than one e ement and number of rows is not equal
to the number of columns

1 1] - -
- 11100
. 4 20330
_76_



MATRICES - INTRODUCTION
TYPES OF MATRICES

The number of rows is equal to the number of columns

(asguare matrix A has an order of m)

1 1 1 1 1
O 90

3 0O

2 e 6 1

The principal or main diagonal of a square matrix is composed of all
elements a; for which i=



MATRICES - INTRODUCTION
TYPES OF MATRICES

A sguare matrix where all the elements are zero except those on
the main diagonal

) ) 3000

1 00 0 300

0 20 0 050

00 1 0009
i.e.a;=0foralli¥]

a; # 0for someorall i =]



MATRICES - INTRODUCTION
TYPES OF MATRICES

A diagonal matrix with ones on the main diagonal

1 0 0
O 10
O 0 1
0 0 O
|ea”—0foralll,z/

o
0 1 0 _aij
o| |0 1] |o
N i

j and a, = 1 for someor all i =].




MATRICES - INTRODUCTION
TYPES OF MATRICES

7. Null (zero) matrix -0

All elementsin the matrix are zero

0 0 0 O
0 000
0

R 00 0

aij —(0 Foralij



MATRICES - INTRODUCTION
TYPES OF MATRICES

A sguare matrix whose elements above or below the main
diagonal are all zero

1 0 0] [ 1 | |

or NN B
N B O
w O O
o O B
O = 00
w O O

2 10
52 3



MATRICES - INTRODUCTION
TYPES OF MATRICES

A sguare matrix whose elements below the main diagonal are al
ZEero

a a alrisg7 |- 044

01311311018 01 74
b 0 0 7 8

0 0 a4 O 0 3

- 4 L - ]lo0o 00 3

l.e.a; =0forali>]



MATRICES - INTRODUCTION
TYPES OF MATRICES

A sguare matrix whose elements above the main diagonal are al
ZEero

a 0 O 1 00
a a; 0 2 10
& & G 2 2 3

l.e.a;=0forali<]



MATRICES — INTRODUCTION
TYPES OF MATRICES

A diagonal matrix whose main diagonal elements are equal to the
same scalar

A scalar is defined as a single number or constant

a 0 0| [1 0 0] [6
0 a O 0 10 0
_O 0 aij_ _O 0 1_ 0

0

o O O O
o O O O

o O o0 O

l.e.a; =0forali=]
g; =aforali=|



MATRICES

‘ Matrix Operations
-



MATRICES - OPERATIONS

EQUALITY OF MATRICES

Two matrices are said to be egual only when all
corresponding elements are equal

Therefore their size or dimensions are equal as well

or NN B
N B O
w O O
or NN B
N B O
w O O




MATRICES - OPERATIONS

Some properties of equality:

lff A=B,thenB =A foral A and B
ffA=B,andB=C,thenA=Cforal A,BandC

or NN B
N P O
w O O

If A =B then aij :hj

A

021

31

b,
b22

b




MATRICES - OPERATIONS
ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same size
yieldsamatrix C of the same size.

Cj =& +b;

Matrices of different sizes cannot be added or subtracted.



MATRICES - OPERATIONS

Commutative Law:
A+B=B+A

Associative Law:
A+(B+C)=(A+B)+C=A+B+C

7 3 -1][1 5 6] [8 8
2 -5 6| |-4 -2 3| |-2 -7

%3 2X3 2X3




MATRICES - OPERATIONS

A+0=0+A=A
A + (-A) = 0 (where -A Isthe matrix composed of —g; as €lements)

6 4 2| [1 2 0] [5 2 2
3 27//108] |22 -1




MATRICES - OPERATIONS
SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single element)
Let k be ascalar quantity; then
KA = Ak

3 -1
2 1
2 -3
4 1

Ex. If k=4 and




MATRICES - OPERATIONS

3 -1| [3 -1 12 -4
2 1 2 1 8 4
2 -3| |2 -3 8 -12
4 1] 4 1 16 4

Properties.

*k (A +B)=kA + kB

* (k +g)A = kA +gA

* k(AB) = (kA)B = A(k)B
* k(gA) = (kg)A



MATRICES - OPERATIONS
MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be for multiplication to
be possible

I.e. the number of columns of A must equal the number of rows
of B

Example.
A x B = ~C
(Ix3) (3x1) (1x1)



MATRICES - OPERATIONS
B x A = Notpossblel

(2x1) (4x2)

A x B = Not possible!
(6x2) (6x3)

Example
A X B = C
(2x3) (3x2) (2x2)



MATRICES - OPERATIONS

A
Gy

(8 x
(8, %
(ay X
(8 X

4,
A

0);) + (8, %
0,) + (8, X
D) + (8 X
0),) + (8, X

a;
e

b, b,|
b b . C_I_l
21 22 |
_021
_b31 b32 _
0,1) + (a3 xby) =Cy
0,,) + (s xby) =¢p,
0,,) + (a3 X0y ) =Cyy
0,,) + (33 xBy,) = Cyy

Successive multiplication of row 1 of A with column | of
B — row by column multiplication




MATRICES - OPERATIONS
{1 2 3}: 2_{(1x4)+(2><6)+(3x5) (1><8)+(2><2)+(3><3)}

4 2 7 £ 3 (4x4)+(2x6)+(7x5) (4x8)+(2x2)+(7x3)
31 21
|63 57/
Remember also:
A=A
1 0] [31 21] 31 21

0 1| |63 57| |63 57



MATRICES - OPERATIONS
Assuming that matrices A, B and C are conformable for

the operations indicated, the following are true:

Al =1A=A

A(BC) =(AB)C =ABC - (associativelaw)
A(B+C)=AB + AC - (first distributivelaw)
(A+B)C = AC +BC - (second distributive law)

> W NP

Caution!

1. AB not generaly equal to BA, BA may not be conformable
2. |If AB =0, neither A nor B necessarily =0

3. If AB=AC, B not necessarily =C



MATRICES - OPERATIONS
AB not generally equal to BA, BA may not be conformable

1 2
T =

S
S=

1 23 4] [3 8
TS = -

5 0[/0 2| |15 20

3 41 2] [23 6
S-I_: —

0 2|5 0| |10 O




2
—2

3

MATRICES - OPERATIONS

If AB =0, neither A nor B necessarily =0

-3




MATRICES - OPERATIONS
TRANSPOSE OF A MATRIX

If :

A=2A3=
2%3 5 3 1

Then transpose of A, denoted A' is:
5 B

A=A =4 3

_7 1_

.
d; =4a;; Fordliand]



MATRICES - OPERATIONS
To transpose;

| nterchange rows and columns
The dimensions of AT are the reverse of the dimensions of A
2 4 7

A=A =
2 _5 3 1_ 2X3

T T2
A=A = 3x 2

N BN
= Ol




MATRICES - OPERATIONS
Properties of transposed matrices:

1. (A+B)T=AT+BT
2. (AB)T=BTAT

3. (KA)T=KkAT

4. (ANT=A



|

MATRICES - OPERATIONS

1. (A+B)T=AT+BT

7 3 1171 5 6
2 .5 6| -4 -2 3
7 21 |1 =4
3 —-5|+|5 -2
_—1 6_ _6 3_

H

8 8 5| _
-2 -7 9

8 -2

8 —7

5 9

8 -2
8 —7
5 9




MATRICES - OPERATIONS
(AB)T = BT AT

] 11 -
110 2
1|=| |=[2 8§
0 2 3 8
- __2___
1 0




MATRICES - OPERATIONS
SYMMETRIC MATRICES

A Sguare matrix issymmetric if it isequal to its
transpose:

A=AT




MATRICES - OPERATIONS

When the original matrix Is sguare, transposition does not affect
the elements of the main diagonal

T
_C d_

o
_b d_

A=

A' =

The identity matrix, |, adiagonal matrix D, and a scalar matrix, K,
are equal to their transpose since the diagonal is unaffected.



MATRICES - OPERATIONS
INVERSE OF A MATRIX

Consider ascalar k. Theinverseisthereciprocal or division of 1
by the scalar.

Example:
k=7 theinverseof kor k1=1k =17

Division of matricesis not defined since there may be AB = AC
while B # C

| nstead matrix inversion Is used.

Theinverse of asguare matrix, A, if it exists, is the unique matrix
A-1twhere:

AALl = ALA =]



MATRICES - OPERATIONS

Example: _ _
3 1
L 2 1_

1 -1
__2 3_

A=,A? =

A=

Because: "1 T3 11 T
_—2 3|2 1_

3 1| 1 —1_’
2 1)-2 3|




MATRICES - OPERATIONS
Properties of the inverse:

(AB)'=B'A™
(A=A
(AT)—l _ (A—l)T
1 1 -1
(kA) ™ = y A

A sguare matrix that has an inverse is called a nonsingular matrix
A matrix that does not have an inverse is called a singular matrix
Square matrices have inverses except when the determinant is zero

When the determinant of amatrix is zero the matrix is singular



MATRICES - OPERATIONS
DETERMINANT OF A MATRI X

To compute the inverse of amatrix, the determinant is required

Each sguare matrix A has aunit scalar value called the
determinant of A, denoted by det A or |A|

If A—12
16 5
1 2

th —
o A=l .




MATRICES - OPERATIONS

If A =[A] isasingle element (1x1), then the determinant is
defined as the value of the element

Then |A| =det A = ay,

If A is(nXx n), itsdeterminant may be defined in terms of order
(n-1) or less.



MATRICES - OPERATIONS

MINORS
If A 1san nx n matrix and one row and one column are deleted,

the resulting matrix isan (n-1) x (n-1) submatrix of A.

The determinant of such a submatrix is called aminor of A and
Is designated by m;; , where | and j correspond to the deleted
row and column, respectively.

m;; I1sthe minor of the element ; in A.



MATRICES - OPERATIONS

= a, a, aj
A= dy Qy, Ay
_a31 a32 a33_

Each element in A has a minor

Deletefirst row and column from A .

A

rn_l_:
|y

As
As3




MATRICES - OPERATIONS

Therefore the minor of a,, IS:

my, =

L)
A

And the minor for a;; IS:

M, =

A
A

As
As3

A
A,




MATRICES - OPERATIONS
COFACTORS

The cofactor C;; of an element a; is defined as:

Cij — (_1)i+j m,-

When the sum of arow number i and column j iseven, ¢; = m; and
When |+J |S Odd, Clj :'mij

Cll(i =1, .. :1) — (_1)1+1ml1 =+,
C,(i=1j=2)=(-)"m,=-m,
ClS(i =1, J — 3) — (_1)1+3rq3 = +IM




MATRICES - OPERATIONS
DETERMINANTS CONTINUED

The determinant of an n x n matrix A can now be defined as

A =det A=a,C, +a,Cp,+...+ 8,

The determinant of A istherefore the sum of the products of the
elements of the first row of A and their corresponding cofactors.

(It Ispossible to define |A| in terms of any other row or column
but for ssimplicity, the first row only is used)



MATRICES - OPERATIONS

Thereforethe 2 X 2 matrix :
Al
|y Ay |
Has cofactors::

Cy =My =|ay,|=a,,

d:
A Co=—M, = _‘a21‘ = —ay

And the determinant of A Is:

A =a,,Cy +a5,Cp = 8,8, — 8,8,



MATRICES - OPERATIONS
Example 1.

_
_1 2_
A=()-DO)=5

A=




MATRIGgf: OPERATIONS

&, &,
A= Ay, dy dy
_a31 a32 a33_
The cofactors of thefirst row are:
|2 Ay B
Ciy a, a. AyyByz — A3y,
Ay Sy
= - = (BB ~ By
G a, a. Ay Az — Apzdly
R
Ci3 a, a, Ay A3y — Ayl




MATRICES - OPERATIONS

The determinant of amatrix A IS

A =a,,Cy +8,C, = 8,8, — 8,8,

Which by substituting for the cofactorsin this caseis:

Al = 8y, (85,855 — 8y385,) — Ay (8855 — Bp58s;) + Ay3 (885, — 8yp84)



MATRICES - OPERATIONS

Example 2

1
A= 0
-1

O N O
P W P

A = 8y, (85,8055 — 8y385,) — Ay (8855 — Bpe8s;) + Ay3 (8,85, — 8yp84)

A= (1)(2-0)-(0)(0+3)+(1)(0+2) = 4



MATRICES - OPERATIONS
ADJOINT MATRICES

A cofactor matrix C of amatrix A isthe square matrix of the same
order as A in which each element a; is replaced by its cofactor c;; .

Example:
If A=

.

4 3
-2 1

Thecofactor Cof Ais C =




MATRICES - OPERATIONS

The adjoint matrix of A, denoted by adj A, isthe transpose of its
cofactor matrix

adjA=C'
|t can be shown that:
A(adi A) = (adjA) A = |A] |

Example: "1 2]
A=
__3 4_
A= (1)(4)-(2)(-3) =10
N
adjA=C’" =
_3 1 —_




MATRICES - OPERATIONS
. 1 2[4 -2] [10 O
A(adjA) = - =10l
-3 4|3 1 0 10

i A_4 -2 1 2] [10 0—10|
(adA {3 1}{—3 4}{0 10}
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USING THE ADJOINT MATRIX IN MATRIX INVERSION

Since
AAL1l = A1A =]

and
A(adi A) = (ad/A) A=|A] I

then




MATRICES - OPERATIONS

Example i
1 2
A =

¥
a1 1[4 -2]_[04 -02
10{3 1| |03 01

To check AALl = ALA =|

i | 1 2J04 -02] 1
-3 4]03 01] |0
ain |04 -02]1 2] [1
103 01]-3 4] |0
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Example 2 ] )
3 -1 1
A=12 1 O

1 2 -1

The determinant of A Is
Al = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2

The elements of the cofactor matrix are

Ch = +(-1), Cpo = —(-2), Cs = +(3),
C,, =—(-D), C,, =+(-4), Cys =—(7),
Cy =+(-1), Cy, =—(—2), Cyp = +(9),



MATRICES - OPERATIONS

The cofactor matrix is therefore

—1

C=|1

-1

0 _

adjA=C' =
and

A_lzade: 1

A =2

2 3]
—4 -7

-1
—4 2
-7 5

-1 1 -1]
2 -4 2

3 -7 5

05 -05 05°
-1.0 20 -10
-15 35 -25




MATRICES - OPERATIONS
The result can be checked using

AAT =A1A =|

The determinant of a matrix must not be zero for the inverse to
exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants



MATRIX INVERSION

‘ Simple 2 x 2 case




SIMPLE 2 X 2 CASE
L et

A=

Since it is known that
AAl=]

then

and




SIMPLE 2 X 2 CASE
Multiplying gives

aw+by=1
ax+bz=0
cw+dy=0
cX+dz=1

It can simply be shown that
Al=ad-bc



SIMPLE 2 X 2 CASE

thus




SIMPLE 2 X 2 CASE




SIMPLE 2 X 2 CASE




SIMPLE 2 X 2 CASE

—bz
X=—"




SIMPLE 2 X 2 CASE

So that for a2 X 2 matrix the inverse can be constructed
Inasimple fashion as

.
W X A JA|_1[d -b
Y 4l |4 A

= ‘ e
*Exchange elements of main diagonal

A =

*Change sign in elements off main diagonal

Divide resulting matrix by the determinant




SIMPLE 2 X 2 CASE

Example
2 3
A=
_4 1_
A—lz_i_ 1 —3_:
10_—4 2_
Check inverse
A1l A=]
1] 1 -3]
10_—4 2_

—0.1 03]
04 -02
2 3] [1 0




MATRICES AND LINEAR EQUATIONS

‘ Linear Equations
-



LINEAR EQUATIONS |
Linear equations are common and important for survey

problems

Matrices can be used to express these linear equations and
aid in the computation of unknown values

Example

n equations in n unknowns, the g; are numerical coefficients,
the b; are constants and the x; are unknowns

A X + X, o+ X, :bl
Ay X+ Axp X, +- -+ Ay X, :bz

a'nlxl_I_anZXZ_I_'“_l_anan :bn



LINEAR EQUATIONS

The equations may be expressed in the form

where
_a:Ll a12
NE
0 -

Number of unknowns = number of equations = n

AX =B

a, | %

:azn X = :Xz . and

A | | X ]
nx1l




LINEAR EQUATIONS

If the determinant is nonzero, the equation can be solved to produce
n numerical values for X that satisfy all the ssimultaneous equations

To solve, premultiply both sides of the equation by A-* which exists
because |A| #0

A1AX =A1B
Now since
AlA =]
We get
J X=A1lB

So if the inverse of the coefficient matrix i1s found, the unknowns,
X would be determined



LINEAR EQUATIONS

Example

3X =X, + X =2

2X, +X, =1

X +2X,— X% =3

The equations can be expressed as

3 -1 1
2 1 0
1 2 -1




LINEAR EQUATIONS

When A1 is computed the equation becomes

X=A"B=

Therefore

05 -05 05
-10 20 -10
-15 35 -25
X =2,
X, = =3




LINEAR EQUATIONS

The values for the unknowns should be checked by substitution
back into the initial equations

X, =2, 3X =X, + X, =2
X, =3, 2% +%, =1
X, =—7 X +2X, — X =3

3% (2) = (=3) + (-7) =2
2% (2)+(-3) =1
(2)+2x(~3)—(~7) =3



!'_ Eigenvalues and Eigenvectors

1 Eigen values and Eigenvectors

2 Diagonalization

3 Symmetric Matrices and Orthogonal Diagonalization
4 Application of Eigenvalues and Eigenvectors

5 Principal Component Analysis

7.1



1 Eigenvalues and Eigenvectors

= Eigenvalue problem (one of the most important problems in the
linear algebra):

If Aisan nxn matrix, do there exist nonzero vectorsx in R"

such that Ax isascalar multiple of x?

(The term elgenvalue is from the German word Eigenwert, meaning
“proper value™)

= Eigenvalue and Eigenvector :

A. an nxn matrix
A: ascaar (could be zero) ¢ Geometric | nterpretation

X: anonzero vector in R M
AX = AX

Eigenvalue

AX = AX
| | >

Eigenvector




« EX 1. Veifying eigenvalues and eigenvectors

SIS P

Eli genvalue

2 0|1 2 1

AX, = = =2| |=2X,
O -1|/0 0 0
I

Eigenvector

Eigenvalue

e e

I
Eigenvector

7.3



- Thm. 1. The eigenspace corresponding to A of matrix A

If Aisan nxn matrix with an eigenvalue A, then the set of all
eigenvectorsof A together with the zero vector is a subspace

of R". This subspace is called the eigenspace of 1

Proof:
X, and X, are eigenvectors corresponding to A

(l.e, AX;=AX,, AX, =AX,)
D A(X,+X,) = AX; + AX, = AX, + AX, = (X, +X,)

(i.e,, X, +X, Isalso an eigenvector corresponding to 4)
(2) A(Cx;) = c(Ax;) = c(Ax,) = A(CX,)

(i.e,, cx,isasoan eigenvector corresponding to 4)

Since this set Is closed under vector addition and scalar
multiplication, this set is a subspace of R" .

7.4



= EX 3: Examples of elgenspaces on the xy-plane

For the matrix A as follows, the corresponding elgenvalues
aet,=-land 4,= 1

-1 0
A=
o
Sol:

For the eigenvalue 4, = —1, corresponding vectors are any vectors on the x-axis
X -1 0| | x —X X | 2% Thus, the eigenspace
Al = = = correspondingto A = —1 isthe x-
0 0O 1]1]0 0 0 axis, which is a subspace of R

For the eigenvalue 4, = 1, corresponding vectors are any vectors on the y-axis

0 -1 0|0 0 O| 3 Thus, the eigenspace
Al = 0 1 = corresponding to 4 = 1isthey-
y y y y axis, which is a subspace of R?

7.5



> Geometrically speaking, multiplying avector (x, y) in R* by the matrix A
correspondsto areflection to the y-axis, i.e., left multiplying Ato v can
transform v to another vector in the same vector space

Al -AA
RUEHN

7.6



« Thm. 2: Finding elgenvalues and eigenvectors of amatrix AeM_
Let A be an nxn matrix.

(1) An eigenvalue of Aisascaar A such that det(Al — A)=0
(2) The eigenvectors of A corresponding to 4 are the nonzero
solutionsof (Al —A)x=0
= Note: follwing the definition of the eigenvalue problem
AX=AX = AX=AIXx = (Al — Ax=0 (homogeneous system)
(Al — A)x=0 has nonzero solutions for x iff det(Al —A)=0
(The above iff results comes from the equivalent conditions on Slide 4.101)

= Characteristic equation of A:
det(A1l —A) =0

» Characteristic polynomial of AeM_.;:
det(Al - A) =|(Al —A)|=2"+c A" +---+CcA+C,

1.7



= EX 4: Finding eigenvalues and eigenvectors
2 -12
A=
1 -5
Sol: Characteristic eguation:

A-2 12
-1 A+5

=1°+31+2=(1+)(1+2)=0
=>A=-1-2

dﬂM—N=|

Eigenvalue: 4, =-1 1, =-2

7.8



B - =3 120 x| |0
v TG

—_3 12} G.-J.E. {1 _4}
p— >
-1 4 0 0
. XH‘“H“] %0
RS t 1
|4 2] x| |O
24 =2=> _A)X{—l JLJ_M
__4 12} G.-J.E {1 _3}
— >
-1 3 O O

T4 e




= EX 5: Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding e genvectors for
the matrix A. What is the dimension of the e genspace of
each eigenvalue?

2 10
A=[0 2 0
00 2

Sol: Characteristic equation:
A-2 -1 0
|/1I—A|= 0 A-2 0 |=(1-2°=0
0 0 A1-2
Eigenvalue: 1 =2

7.10



The eigenspace of 1 = 2

0 -1 0] x 0
(Al -Ax={0 0 O0Ofx |=|0
0 0 0] x]| |0]
x| [s] [1] [O]
X, |=|0|=90(+t 0}, s,;t=0
X | [t] |10] [1

1 0
18| 0|+t] O|ls,t e R;:theagenspaceof Acorrespondingtod =2
0 1

Thus, the dimension of its elgenspaceis 2

711



= Notes:
(1) If an eigenvalue A, occurs as a multiple root (k times) for
the characteristic polynominal, then 4, has multiplicity k

(2) The multiplicity of an eigenvalue is greater than or equal
to the dimension of itseigenspace. (In Ex. 5, kis3 and
the dimension of its eigenspace is 2)

7.12



« EX 6  Find the eigenvalues of the matrix A and find abasis
for each of the corresponding eigenspaces

100 O
0 15 -10
A=11 0 2 o0
100 3

Sol: Characteristic eguation:
A-1 0 0 0

0 4-1 -5 10
Al - A=
-1 0 1-2 O
-1 0 0 4-3
=(A-1*(1-2)(1-3)=0
Eigenvalues: 4, =1, 4, =2, 4, =3

7.13



"0 0 0 071 x] [0]
) 1WA))(OO—Slezo
— — — = =
D A4 -1 0 -1 0|[x| |O
10 0 -2|x]| |0
_Xl_ [ 2t | 0] [-2
G-E| X, S 1 0)
= = =s| |+t . St=0
X 2t 0 2
X, | [t ] [0] | 1]
o] [-2]l
1(| O
= ol'l 2 > isabasisfor the eigenspace
correspondingto 4, =1
O|| 1

< The dimension of the eigenspace of 1, =1is2
7.14



(1 0 0 Of[x] [O]
0O 1 -5 10|| X, 0
DAL=2 =LAl -AX= =
@ k=2 =@ -Ax=| o o o5
-1 0 0 -1fx,| |0]
'x1 [0] [0
G.-JE.
= X2:5t:t5,t¢0
X, t 1
X | (0] [0
K—O—\
o1 . . .
—. . Isabasisfor the eigenspace
11| correspondingto A, =2
0

% The dimension of the eigenspace of 1, =2is1
7.15



(2 0 O O"xl_ (0
3 3 = (Al - A)x = 0 2 -5 10|| x, B 0
3 4= -1 0 1 Ofx]| |0
-1 0 0 0] x| |0
_Xl_ 071 To
G-JE| X, 5t -5
= = =1 , t#0
X, 0 0
X | [t ] |1
(r— O—\
-5 . : .
— . isabasisfor the eigenspace
O || correspondingto4, =3
1

> The dimension of the eigenspace of 1, = 3is1 7.16



- Thm. 3: Eigenvaluesfor triangular matrices

If Aisan nxn triangular matrix, then its eigenvalues are
the entries on its main diagonal

« EX 72 Finding eigenvalues for triangular and diagonal matrices

100 0 O
2 0 0 0 20 0 O
@A=[-1 1 0| (MA=[0 00 0 O
5 3 -3 0 00 -4 0
) ) 0 00 0 3
Sol:
A-2 0 0
@A -A=[ 1 1-1 0 |=(A-2A-1(A+3=0
-5 -3 A+

=4 =2 A =1 % =-3
(b) A =-1 2,=2, 5=0, A, =—4, J =3

7.17



= EX 8: Finding eigenvalues and elgenvectors for standard matrices
Find the eilgenvalues and corresponding el genvectorsfor

Sol:

M- A=

—eagenvaues A, =4, 4, =-2

1 3 0
A=3 1 O

00 -2

(A-1 -3 0 |
-3 A-1 O

0 0 A+2

2% A isthe standard matrix for T(x,, X,,
Xg) = (Xq * 3Xp, 3y + X, —2X3) (see
Slides 7.19 and 7.20)

= (1+2%(A-4)=0

For 1, = 4, the corresponding eigenvector is (1, 1, 0).
For A, =—2, the corresponding elgenvectorsare(1, —1, 0O)
and (O, O, 1).

7.18



« 1ransformation matrix A' for nonstandard bases

Suppose B isthe standard basis of R". Since the coordinate matrix of avector
relative to the standard basis consists of the components of that vector, i1.e.,

forany x inR", x = [x];.

T(x) = Ax=[T(x)]. = A[x],, where A= [[T(el)]B [T(e)]. ---[T(en)]B]
IS the standard matrix for T or the matrix of T rdative to the standard
basis B

The above theorem can be extended to consider a nonstandard basis B', which
consistsof {v,,V,,...,V_}

[T, = A'[X],, where A'=|[T(v)], [T(v)], [TV, |
IS the transformation matrix for T relative to the basis B'

7.19



2 Diagonalization

= Diagonalization problem :

For a sguare matrix A, does there exist an invertible matrix P
such that P-AP is diagonal ?

= Diagonalizable matrix :

Definition 1: A square matrix A is called diagonalizable if
there exists an invertible matrix P such that PtAPisa
diagonal matrix (i.e., P diagonalizes A)

Definition 2: A square matrix A is called diagonalizableif A
Issimilar to adiagonal matrix
> In Sec. 6.4, two sguare matrices A and B are similar if there exists an invertible

matrix P such that B = P-1AP.
= Notes;

This section shows that the elgenvalue and eigenvector problem
IS closely related to the diagonalization problem

7.20



= Thm. 4: Similar matrices have the same elgenvalues

Pf:

If A and B are similar nxn matrices, then they have the
same elgenvalues

For any diagonal matrix in the

. . . -1

Consider the characteristic egudation of B:
Al —=B|=|Al -P*AP| £[PAIP- PAP| =|P (Al - A)P)
=|P|4l - A|P|=|P||P||Al - A=|P*P||Al - A

~ |21 - A

Since A and B have the same characteristic equation,
they are with the same eigenvalues

><¢ Note that the eigenvectors of A and B are not necessarily identical 291



= EX 1. Eigenvalue problems and diagonalization programs

1 3 0
A=3 1 O
0 0 -2
Sol: Characteristic equation:
A-1 -3 0
[Al-A=-3 1-1 O =(1-4(1+2)°=0
0 0 A+2

Theeigenvadues: 4, =4, 4, =-2, 4,=-2

() A=4= theegenvector p,=| 1

1.22



(2) 1 =-2=theagenvector p, =| -1|, p,=|0

_O_ _1_
1 1 0 4 0 O]
P=[p, p, p.]=|1 -1 0|,andP*AP=|0 -2 O
0 0 1 0 0 -2]
- Note: If P=[p, p;, Pl

1 1 O] 2 0 0]

=1-1 10 = P'AP=|0 4 O

0 0 1 O 0 -2

7.23



- Thm. 5: Condition for diagonalization

An nxn matrix Alisdiagonalizableif and only if it hasn
linearly independent elgenvectors

><¢ If there are n linearly independent eigenvectors, it does not imply that there are n distinct
eigenvalues. In an extreme casg, it is possible to have only one eigenvalue with the
multiplicity n, and there are n linearly independent eigenvectors for this eigenvalue

»< On the other hand, if there are n distinct eigenvalues, then there are n linearly
independent elgenvectors, and thus A must be diagonalizable

1.24



= EX 4: A matrix that is not diagonalizable
Show that thefollowing matrix isnot diagonalizable

5

Sol: Characteristic eguation:

A-1 -2 ,
2 -A=" A_]Jz(/’t—l) -0

Theeaigenvdue 4, =1, and then solve (4,1 — A)x =0 for eilgenvectors

| — A= A—O 2 —> @ genvector —1
4 = o o g Pi=| g

Since A does not have two linearly independent eigenvectors,
Aisnot diagonalizable

7.25



= Steps for diagonalizing an nxn square matrix:

Step 1: Find n linearly independent elgenvectorsp,,pP.,- P,
for A with corresponding eigenvalues 4,, 4,,..., 4.

Step2:Let P=[p,p, - Pp,]

Step3 _ﬂ]_ O O_
piap=p=| ) %2 7 O
0 0 - 4

7.26



= EX 5: Diagonalizing a matrix

1 -1 -1
A=| 1 3 1
-3 1 -1

Find amatrix P such that P AP isdiagonal.

Sol: Characteristic eguation:

A-1 1 1
|/1I—A|: -1 A-3 -1|=(1-2)(1+2)(1-3)=0
3 -1 A+1

Theeigenvalues: 4, =2, 4, =-2, 4,=3

1.27



Lh=2=41 -A=
% [t
X, 0
REAR

N
—

1 1 1
1 -1 -1
3 -1 3

= elgenvectorp, =| 0

3 1 1
-1 -5 -1
'3 -1 -1

—> egenvector p, =

G.-J. E.

G.-J E

v
o O B

v
_ O O B |

o — O

SRS X

[

N[
o N

IS X

7.28



P:[pl

PAP =

P

p3] =

2 1
-1 O
3 -1

1
-1

G.-J. E.

A 4

4_

= elgenvector p, =

-1 1

1 4

0O -1 1

—11

1

and it follows that

SRS X

7.29



- Note: aquick way to calculate Ak based on the diagonalization

technique

K
0
()D=| .

0

(2 D=P'AP = D“= P'AP P'AP

A = PD*P, where D* =

A

2

0

0

— D¥ =

repeat\lg times
_ﬂik 0
0 A

O O

7.30



= Thm. 6: Sufficient conditions for diagonalization
If an nxn matrix A has n distinct eigenvalues, then the
corresponding eigenvectors are linearly independent and
thus A is diagonalizable.

7.31



« EX 7: Determining whether a matrix is diagonalizable

1 -2 1~
A=[0 0 1
0 0 -3

Sol: Because A isatriangular matrix, its eigenvalues are

W=1, 2,=0, J=-3

According to Thm. 6, because these three values are
distinct, A isdiagonalizable

7.32



= EX 8: Finding a diagonalized matrix for alinear transformation
Let T: R® > R’ be the linear transformation given by
T %) = (% =X =X, % + 3%, + X5, = 3% + X, = X;)
Find abasis B' for R® such that the matrix for T relative

toB' isdiagonal
Sol:
The standard matrix for T is given by
(1 -1 -1]
A=l1 3 1
-3 1 -1

From Ex.5youknow that 1, =2,1,=-2, 1;=3 andthusAis
diagonalizable.

7.33



B'={V,,V,,va ={(-1 0, D,L, -1 4),(-1 1, D}

The matrix for T relativeto thisbasisis

A =

[T(v)le [TV )le [TVl ]
2 0 0
0 -2 0

0 0 3

7.34



3 Symmetric Matrices and Orthogonal Diagonalization

= Symmetric matrix :

A sguare matrix A issymmetric if it isequal to its transpose:
A=A

= EX 1. Symmetric matrices and nonsymetric matrices
—2

A=

B =

0 1
1 3

-2 0

0
5

o Bk

Ol

(symmetric)

(symmetric)

(nonsymmetric)

7.35



= Thm 7: Eigenvalues of symmetric matrices

If Alsan nxn “symmetric” matrix, then the following
properties are true

(1) Aisdiagonalizable (symmetric matrices (except the
matricesin theform of A =al, in which case A is aready
diagonal) are guaranteed to have n linearly independent
eigenvectors and thus be diagonalizable)

(2) All eigenvalues of A are real numbers

(3) If Ai1san eigenvalue of A with the multiplicity to be k, then
A has k linearly independent eigenvectors. That is, the
eigenspace of 4 has dimension k

»< The above theorem is called the Real Spectral Theorem, and the set of
eigenvalues of A is called the spectrum of A

7.36



« EX 2
Prove that a2 x 2 symmetric matrix is diagonalizable

¥

Pf: Characteristic equation:

A —Az"l‘a ~C 2 _(atb)A+ab—c? =0

-Cc A-Db

As afunction in A, this quadratic polynomial function has a
nonnegative discriminant as follows

(a+b)? —4(1)(ab-c?) =a* + 2ab+b* —4ab+ 4c”
—a’—2ab+b”+4c?
= (a—b)* + 4¢® > 0= red-number solutions

7.37



(1) (a-b)?+4c? =0

— a=Db, c=0

0
A=|? Y1219 7 itsalf is adiagonal matrix
c b 0 a

»< Notethat in this case, A has one eigenvalue, a, whose multiplicity is 2,
and the two eigenvectors are linearly independent

(2) (a-b)*+4c®>0

The characteristic polynomial of A hastwo distinct real roots,
which impliesthat A has two distinct real eigenvalues.
According to Thm. 6, A isdiagonalizable

7.38



= Orthogonal matrix :
A sguare matrix P is called orthogonal if it isinvertible and

Pt=P (or PP" =P P=1)

= Thm. 8: Properties of orthogonal matrices

An nxn matrix P isorthogonal if and only if its column vectors
form an orthonormal set

Pf: Suppose the column vectors of P form an orthonormal set, i.e.,
P=[p, p, - p,], wherep, -p, =0fori= jandp,-p, =1
PPy PP, o PP | [PiPr PPt PP

op_| PP P2Py o Py Py|_|P2Py PaPy o PoPy

_pnTpl pnsz pnTpn_ | PnPr PrP2 0 PrPa_

It impliesthat P-* = PT and thus P is orthogonal 7.39



« Ex 5: Show that P is an orthogonal matrix.

1 2 2
3 3 3
—| =2 L
P= = X 0
2 -4 5
| 3/5 3J5 35

Sol: If Pisaorthogonal matrix, then P1=P" — PP' =|

1 2 =2 - .
i 5 3|3 B s (100
T _| = 1 2 1 -4 | — —
PP — % % O 3 % 345 — O 1 O —I
2 4 5|2 (g 5 0 01
35 35 3|3 <N =

7.40



1 2| [ 2 ]
3 3 3

Moreover, let p, = _Tg , P, = % ,andp,=| 0 |,
=2 4 ==

| 345 | 35 |35 _

wecan producep, -p, =p, P, =P, P, =0andp,-p, =
p2°p2:p3'p3:1

So, {p;, P,, Ps} Isan orthonormal set.

7.41



= Thm. 9: Properties of symmetric matrices

Let A be an nxn “symmetric” matrix. If A, and A4, are distinct

eigenvalues of A, then their corresponding eigenvectors x, and X,
are orthogonal.

Pf:
21(X1°X2) — (21X1)'X2 = (Axl) Xy = (Axl)T X, = (XI AT)Xz

because A is symmetric T T T
— (Xl A)Xz =X (sz) =X (ﬂzxz) =Xy (/’lzxz) = ﬂz(xl 'Xz)
The above equation implies (4, — 4,)(X, - X,) = 0, and because
A # A,, Itfollowsthat x, - x, =0. S0, X, and x,, are orthogonal

>< For distinct eigenvalues of a symmetric matrix, their corresponding
eigenvectors are orthogonal and thus linearly independent to each other

»< Note that there may be multiple x,’s and x,’s corresponding to 4, and A,

1.42



= Orthogonal diagonalization :

A matrix A isorthogonally diagonalizableif there exists an
orthogonal matrix P such that PtAP = D is diagonal

= Thm. 10: Fundamental theorem of symmetric matrices

An nxn matrix A isorthogonally diagonalizable and has real
eigenvaluesif and only if Aissymmetric

Pf:

(=)
A is orthogonally diagonalizable
= D =P AP isdiagonal, and P is an orthogonal matrix s.t. P =P’
— A=PDP*=PDP" = A" =(PDP")" =(P")'D'P" =PDP' = A

7.43



= Orthogonal diagonalization of a symmetric matrix:

Let A be an nxn symmetric matrix.
(1) Find all eigenvalues of A and determine the multiplicity of each
> According to Thm. 9, eigenvectors corresponding to distinct eigenvalues are
orthognoal
(2) For each eigenvalue of multiplicity 1, choose the unit eigenvector
(3) For each elgenvalue of the multiplicity to bek > 2, find a set of k
linearly independent eigenvectors. If thisset {v,, v,, ..., V,} IShot
orthonormal, apply the Gram-Schmidt orthonormalization process
It is known that G.-S. processisakind of linear transformation, i.e., the
produced vectors can be expressed asc,v, +C,V, +---+ ¢V, (see Slide 5.55),
I. Since Av, = Av,, Av, = AV,,..., AV, = Av,,
= A(cVv,+CV, +---+CV,)=A(CV,+C,V, +--+CV,)
— The produced vectors through the G.-S. process are still eigenvectorsfor A
Il. Sincev,, Vv,,--, Vv, areorthogonal to eigenvectors corresponding to other
different eigenvalues (according to Thm. 7.9), cv, +C,v, +---+C.V, isaso
orthogonal to eigenvectors corresponding to other different eigenvalues.

7.44



(4) The composite of steps (2) and (3) produces an orthonormal set of
n eigenvectors. Use these orthonormal and thus linearly
Independent elgenvectors as column vectors to form the matrix P.

I. According to Thm. 8, the matrix P is orthogonal
li. Following the diagonalization process, D = PAP isdiagona
Therefore, the matrix A is orthogonally diagonalizable

7.45



N

R, O P
PR

Symmetric
matrix

O

X
X
O

Orthogonally

diagonalizable

O

X
X
O

= EX 7: Determining whether a matrix is orthogonally diagonalizable

7.46



« EX 9: Orthogonal diagonalization
Find an orthogonal matrix P that diagonalizes A

2 2 2]
A=| 2 -1 4
2 4 -1

Sol:
(1) \/II —N =(1-3)%(1+6)=0

A, =—6, 1, =3 (hasamultiplicity of 2)
(D) L=6v,=(L -2 2) = u=—1=( 2 2

A
1

d 4=3v,=(2 1 0), v,=(-2 4, 5)
~_

orthogonal
7.47
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IMPROPE RS




TECHNIQUES OF INTEGRATION
In defining a definite integral_"b f(x)dx .

a
we dealt with a function f defined on a finite
interval [a, b] and we assumed that f does
not have an infinite discontinuity



Improper Integrals

In this section, we will learn:
How to solve definite integrals

where the interval is infinite and
where the function has an infinite discontinuity.



IMPROPER INTEGRALS
In this section, we extend the concept

of a definite integral to the cases where:

= The interval Is Iinfinite

* f has an infinite discontinuity in [a, b]



IMPROPER INTEGRALS
In either case, the integral is called

an improper integral.

* One of the most important applications of this idea,
probabillity distributions, will be studied in Section 8.5



TYPE 1—INFINITE INTERVALS
Consider the infinite region S that lies:

= Under the curve y = 1/x?
= Above the x-axis

* Totheright of the line x =1



INFINITE INTERVALS
You might think that, since S is Infinite

INn extent, Its area must be infinite.

= However, let’s take a closer look.



INFINITE INTERVALS
The area of the part of S that lies to the left

of the line x =t (shaded) Is:
t 1 17
A(t):L_?dX:—; :1—

= Notice that -

A(t)<1no
matter how
large tis
chosen.




INFINITE INTERVALS
We also observe that:

limA(t):!im(l—:t—szl



INFINITE INTERVALS
The area of the shaded region approaches
last— .




INFINITE INTERVALS
So, we say that the area of the Infinite

region S is equal to 1 and we write:

—de:lim 2dx:l

1X t—>oolX

[ Loxetim(



INFINITE INTERVALS
Using this example as a guide, we define
the integral of f (not necessarily a positive
function) over an infinite interval as the limit
of integrals over finite intervals.



IMPROPER INTEGRAL OF TYPE 1  Definition 1 a
t "

If j f (X) dx exists for every number t = a,
a

then

j f(x)dx=lim f(x)dx

t—w

provided this limit exists (as a finite number).



IMPROPER INTEGRAL OF TYPE 1  Definition 1 b
b .

If j f (X) dx exists for every number t < a,
t

then

[* £ dx=lim | f (x)x

>

provided this limit exists (as a finite number).



CONVERGENT AND DIVERGENT  Definition 1 b

The improper integrals ro f (x)dx and
b a

[” f(dx are called:

= Convergent if the corresponding limit exists.

= Divergent if the limit does not exist.



IMPROPER INTEGRAL OF TYPE 1 Definition 1 c

If both j f (x)dx and j f (x)dx are

convergent, then we define:

[ feadx=[" foyax+[  f(xax

= Here, any real number a can be used.



IMPROPER INTEGRALS OF TYPE 1
Any of the improper integrals

In Definition 1 can be interpreted
as an area provided f Is a positive
function.



IMPROPER INTEGRALS OF TYPE 1

For instance, in case (a), suppose f(x) = 0

and the integral joo f (X) dx is convergent.
a

* Then, we define the area of the region
S={(x,y) | x=a, 0=sy<=<f{(x)}Iin the figure as:

A(S) = j“’ f () dx

§] a X
G Thomaon Hohes Eouesion




IMPROPER INTEGRALS OF TYPE 1

This is appropriate because I: f (X) dx
s the limit as t — oo of the area under
the graph of f from a to t.

VA

() a

G Thomaoe Hohes Eoues ion




IMPROPER INTEGRALS OF TYPE 1 Example 1
Determine whether the integral

j:’ (1/ X) dx

IS convergent or divergent.



IMPROPER INTEGRALS OF TYPE 1 Example 1
According to Definition 1 a,

we have:
[ dx=lim['~dx=limin|x |
1

1 X t—ooo J1 X t—o

=lim(Int —-Inl)

[ =Yoo

=limlnt =

o0

= The limit does not exist as a finite number.
» S0, the integral is divergent.



IMPROPER INTEGRALS OF TYPE 1
Let's compare the result of Example 1 with
the example at the beginning of the section:

o0 1 00 1 .
L -z dx converges L ” dx diverges

= Geometrically, this means the following.



IMPROPER INTEGRALS OF TYPE 1
The curvesy = 1/x? and y = 1/x look very
similar for x > 0.

However, the region under y = 1/x? to the right
of X = 1 has finite area, but the corresponding
region under y = 1/x has infinite area.




IMPROPER INTEGRALS OF TYPE 1
Note that both 1/x? and 1/x approach 0 as

X — oo, but 1/x? approaches faster than 1/x.

= The values of 1/x don’t decrease fast enough
for its integral to have a finite value.




IMPROPER INTE%RALS OF TYPE 1 Example 2
Evaluate j xe" dx

= Using Definition 1 b,
we have: 0 . 0
j xe"dx=1lim| xe"dx

t—>—o0 J1



IMPROPER INTEGRALS OF TYPE 1 Example 2

= We Integrate by parts with u = Xx,
dv = eXdx so that du = dx, v = eX:

0 « XO OX
L Xe" dx = xe l—_[t e” dx

=—t€ —1+¢€



IMPROPER INTEGRALS OF TYPE 1 Example 2

= We know that et - 0 as t — -oo,
and, by I'Hospital’s Rule,
we have: i
Iimte = lim—

t——o0 to>—0 @ !

. 1
= |Im
t—>—o0 _e_

t

— lim(-¢")

t—>—0

=0



IMPROPER INTEGRALS OF TYPE 1 Example 2

= Therefore,

[* xe*dx=lim(-te' ~1+¢€)

t—>—o0
=—0-1+0
=1




IMPROPER INTEGRALS OF TYPE 1 Example 3

Evaluate [~ _* dx

0 14+ X

= |[t's convenient to choose a = 0 in Definition 1 c:

_‘m i dx = y dx+j

> dx
o] 4+ X —0 ] 4+ X*

1+ X°



IMPROPER INTEGRALS OF TYPE 1 Example 3
We must now evaluate the integrals

on the right side separately—as
follows.



IMPROPER INTEGRALS OF TYPE 1 Example 3

=lim(tan"t —tan" 0)

t—o0

= limtan*t

t—o0

o 1
Lo 1+ X° ™

. 0 dx
= |lim -
to—0 Jt 1_|_X

0
= limtan™ XJ
t——o0 t

= lim(tan™0—tan"t)

t—>—o0

o5

~
2




IMPROPER INTEGRALS OF TYPE 1 Example 3
Since both these integrals are convergent,

the given integral is convergent and

Jm - dX:Z: T

JC
—0 ]+ X2 2




IMPROPER INTEGRALS OF TYPE 1 Example 3
As 1/(1 + x2) > 0, the given improper integral
can be interpreted as the area of the infinite

region that lies under the curve y = 1/(1 + x?)
and above the x—axis.




IMPROPER INTEGRALS OF TYPE 1 Example 4
For what values of p is the integral

ro 1 dx convergent?
1 P

= We know from Example 1 that, if p = 1,
the integral Is divergent.

»= SO0, let's assume that p # 1.



IMPROPER INTEGRALS OF TYPE 1 Example 4
Then,

jwidxﬂim "% P dx
1 P

t—oowo J1

— X=t
Cox P
=lim
t—>o0 p_|_1_

x=1

=lIm 1 {1 1
t—o0 1_ p _tp




IMPROPER INTEGRALS OF TYPE 1 Example 4

fp>1,thenp-1>0.

So ast— o t"" — wand 1/t " - 0.

= Therefore, J‘looide:i it p>1
X

p-—1

= S0, the integral converges.



IMPROPER INTEGRALS OF TYPE 1 Example 4
However, iIf p <1, thenp -1 <0.

1
S0, tp—_lztl_p—)OO S>>

* Thus, the integral diverges.



IMPROPER INTEGRALS OF TYPE 1 Definition 2
We summarize the result of Example 4
for future reference:

LOO X—lp dx is:

= Convergentifp>1

= Divergentifps<1



TYPE 2—DISCONTINUOUS INTEGRANDS
Suppose f Is a positive continuous

function defined on a finite interval [a, b)
but has a vertical asymptote at b.



DISCONTINUOUS INTEGRANDS
Let S be the unbounded region under

the graph of f and above the x-axis
between a and b.

= For Type 1 integrals, the regions extended
iIndefinitely in a horizontal direction.

= Here, the region is infinite in a vertical direction.



DISCONTINUOUS INTEGRANDS
The area of the part of S between a and t

(shaded region) Is:

A(t) = jt f (x) dx




DISCONTINUOUS INTEGRANDS
If it happens that A(t) approaches a definite
number A ast — b, then we say that the area

of the region S Is A and we write:

j f (x)dx = lim f(x)dx

t—>b



DISCONTINUOUS INTEGRANDS
We use the equation to define an improper
iIntegral of Type 2 even when f Is not a positive
function—no matter what type of discontinuity
f has at b.



IMPROPER INTEGRAL OF TYPE 2 Definition 3 a
If f IS continuous on [a, b) and is discontinuous

at b, then

j f(x)dx = lim f(x)dx

t—ob

If this limit exists (as a finite number).



IMPROPER INTEGRAL OF TYPE 2 Definition 3 b
If f IS continuous on (a, b] and is discontinuous

at a, then

[Cfoydx=lim [ f(x)dx

tsa’

If this limit exists (as a finite number).



IMPROPER INTEGRAL OF TYPE 2 Definition 3 b
Definition 3 b is illustrated for the case
where f(x) 2 0 and has vertical asymptotes
at a and c, respectively.




IMPROPER INTEGRAL OF TYPE 2 Definition 3 b
: i b
The improper mtegralj f (x)dx
a
Is called.:

= Convergent if the corresponding limit exists.

= Divergent if the limit does not exist.



IMPROPER INTEGRAL OF TYPE 2 Definition 3 ¢
If f has a discontinuity at ¢, where a < c <D,

and both IC f (x) dx and jb f (xX)dx are
convergent, then we define:

[Cf o= f o+ [ f(x)ax



IMPROPER INTEGRAL OF TYPE 2 Definition 3¢
Definition 3 c is illustrated for the case
where f(x) 2 0 and has vertical asymptotes
at a and c, respectively.




IMPROPER INTEGRALS OF TYPE 2 Example 5
: 5 1
Find 0)%4
2 Jx-2

= First, we note that the given integral is improper

because f (x) =1/ Jx— 2 has the vertical asymptote
X = 2.



IMPROPER INTEGRALS OF TYPE 2 Example 5

* The infinite discontinuity occurs at the left end-point
of [2, 5].
= S0, wWe use Definition 3 b:

= lim

dx
j \/f t—>2" \/f
= lim 2y x— ]

t—>2"

=lim2(\/3 -+t -2)

t—>2"
=23

* Thus, the given improper integral is convergent.




IMPROPER INTEGRALS OF TYPE 2 Example 5

» Since the integrand Is positive,
we can interpret the value of the integral
as the area of the shaded region here.




IMPROPER INTEGRALS OF TYPE 2 Example 6
: /2
Determine whether j SC X dx
0]

converges or diverges.

* Note that the given integral is improper

because: lim SecX = oo

x—(712)



IMPROPER INTEGRALS OF TYPE 2 Example 6

» Using Definition 2 a, we have:

zl2

_ t
secxdx= I|im sec X dx
0 x—>(7/2)” 90

{

= |lim In\secx+tanx@
X—>(7/2)” 0

= lim [In(sect +tant) —Inl|= o

o F X—>(7/2)”
* This is because sect —-wandtant - o ast — (17/2).

* Thus, the given improper integral is divergent.



IMPROPER INTEGRALS OF TYPE 2 Example 7

Evaluate IB dX_ if possible.
0 x-1

= Observe that the line x = 1 Is a vertical asymptote
of the integrand.



IMPROPER INTEGRALS OF TYPE 2 Example 7

= As it occurs in the middle of the interval [0, 3],
we must use Definition 3 ¢ with ¢ = 1:
3 dx 1 dx 3 dXx

= - -
0x—1 Jox-—-1 9J1x-1

where
1 dXx . et dXx . t
" —|im —:Ilm\x—ﬂ
Ox—1 t5190x—-1 to1 0

=!irp(ln\t—ﬂ—ln\—ﬂ)

=limIn(1-t) = —oo

to1

= Thisisbecausel -t—0*ast— 1-.



IMPROPER INTEGRALS OF TYPE 2 Example 7
1 : .

Thus, I dx/(x—1) is divergent.
0

This implies that jjdx/(x—l) Is divergent.

3
= We do not need to evaluatej dx/(x—1).
1






WARNING
Then, we might
erroneous calcu

nave made the following

ation:

X

3 dx :
RS
N n|x ]UO

n2—Inl
n2

= This is wrong because the integral is improper
and must be calculated in terms of limits.



WARNING
From now, whenever you meet the symbol

jb f (X) dx, you must decide, by looking at
the function f on [a, b], whether it Is either:

= An ordinary definite integral

= An improper integral



IMPROPER INTEGRALS OF TYPE 2 Example 8
1

Evaluate _[ In X dx
0]

= We know that the function f(x) = In x has
a vertical asymptote at O since limInx=—ox.

Xx—0"

* Thus, the given integral is improper,
and we have:

_ 1
j Inxdx = lim [ Inxdx
0 t—0" Ji



IMPROPER INTEGRALS OF TYPE 2 Example 8

= Now, we integrate by parts with u = In X,
dv = dx, du = dx/x, and v = X:

1 1 1
L In xdx = xIn x]t —L dx

=1ln1-tint—(1-1)
=—tInt—1+t



IMPROPER INTEGRALS OF TYPE 2 Example 8

= To find the limit of the first term,
we use |I'Hospital’'s Rule:

imtint = lim-.
t—0" t—>0" 1/t

.1/t
=|im

t—>0" —:]_/'[2
= [Im(-t)

=0

=1




IMPROPER INTEGRALS OF TYPE 2 Example 8

= Therefore,

[.Inxdx=lim(~tInt-1+1)

t—>0"
=—-0-1+0
=—1



IMPROPER INTEGRALS OF TYPE 2 Example 8
The geometric interpretation

of the result 1Is shown.

= The area of the shaded
region above y = In X
and below the x-axisis 1.




A COMPARISON TEST FOR IMPROPER INTEGRALS
Sometimes, it Is Impossible to find the exact
value of an improper integral and yet it Is
important to know whether it Is convergent

or divergent.

* |n such cases, the following theorem is useful.

= Although we state it for Type 1 integrals,
a similar theorem is true for Type 2 integrals.



COMPARISON THEOREM
Suppose f and g are continuous functions
with f(x) =2 g(x) = 0 for x = a.

a. If j: f (X) dX is convergent, then ro g(x) dx
IS convergent. )

b. 1f |, 9() A is divergent, then [ f (x)dx
IS divergent.



COMPARISON THEOREM
We omit the proof of the theorem.

However, the figure makes it seem

plausible.




COMPARISON THEOREM
If the area under the top curve y = f(x)
IS finite, so IS the area under the bottom

curve y = g(x).




COMPARISON THEOREM
If the area under y = g(x) Is infinite,

So IS the area under y = f(X).




COMPARISON THEOREM
Note that the reverse Is not necessarily

true:

- Ifja g(x) dX is convergent, ro f (X) dx may
or may not be convergent. °°

= |f Ia f (X) dX is divergent, Ioo g(Xx) dx may
or may not be divergent. “°



COMPARISON THEOREM Example 9
Show that j e ¥ dx is convergent.
0]

= We can’t evaluate the integral directly.

= The antiderivative of e** is not an elementary function
(as explained in Section 7.5).



COMPARISON THEOREM Example 9
We write:

00 2 1 2 00 2
jo e dx= jo e~ dx+_[1 e " dx

= We observe that the first integral on the right-hand side
IS just an ordinary definite integral.



COMPARISON THEOREM Example 9

* |n the second integral, we use the fact that,
for x = 1, we have x2 = x.

= S0, —x2 < -x and, therefore, e** < e,




COMPARISON THEOREM Example 9
The integral of e* is easy to evaluate:

00 ) t
L e “dx=Ilim| e “dx

t—oo J1

=lim(e*-¢e")

t—oo

— e_l



COMPARISON THEOREM Example 9
Thus, taking f(x) = e* and g(x) = e**
In the theorem, we see that jooe‘xz dx
IS convergent. :

o0 2
= |t follows thatj e * dx is convergent.
0



COMPARISON THEOREM
In Example 9, we showed thatjwe‘xzdx
0
IS convergent without computing its value.

= |n Exercise 70, we indicate how to show
that its value is approximately 0.8862

* |n probability theory, it is important to know
the exact value of this improper integral.

» Using the methods of multivariable calculus,
It can be shown that the exact value is\/;/ 2.



COMPARISON THEOREM
The table illustrates the definition of

an improper integral by showing how
t 2
the (computer- generated) values of _[O e dx

approach J7 12 as t becomes large.

* |n fact, these values
converge quite quickly
because e** — 0 very
rapidly as x — .




COMPARISON THEOREM Example 10

The Integral jw1+ e~ dx IS divergent by

1 X
— X
the Comparison Theorem since 1+e > E

X X

LOO (1/ X) dX is divergent by Example 1 or
by Definition 2 with p = 1.
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